Models and Methods | Views : 0 下载量: 1740 CSCD: 1
  • Export

  • Share

  • Collection

  • Album

    • ADC-CPANet:A remote sensing image classification method based on local-global feature fusion

    • In the field of remote sensing image scene classification, experts have designed the ADC-CPANet model, which achieves a high classification accuracy of 96.43% through local and global feature extraction.
    • Vol. 28, Issue 10, Pages: 2661-2672(2024)   

      Received:07 December 2022

      Published:07 October 2024

    • DOI: 10.11834/jrs.20232658     

    移动端阅览

  • Wang W,Li X J and Wang X. 2024. ADC-CPANet:A remote sensing image classification method based on local-global feature fusion. National Remote Sensing Bulletin, 28(10):2661-2672 DOI: 10.11834/jrs.20232658.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Li Xijie 长沙理工大学 计算机与通信工程学院
WANG Yifan 西南石油大学 计算机与软件学院
HUANG Xian 西南石油大学 计算机与软件学院
WANG Jianlin 西南石油大学 计算机与软件学院
ZHOU Tong 西南石油大学 计算机与软件学院
ZHOU Wenjun 西南石油大学 计算机与软件学院
PENG Bo 西南石油大学 计算机与软件学院
ZHOU Weixun 南京信息工程大学 遥感与测绘工程学院;北京师范大学 遥感科学国家重点实验室

相关机构

School of Computer Science and Software Engineering, Southwest Petroleum University
School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science and Technology
State Key Laboratory of Remote Sensing Science, Beijing Normal University
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
Information Engineering University, Institute of Geospatial Information
0