Planetary Data Processing | Views : 0 下载量: 485 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Automatic anchor-free convolutional neural network method for recognizing small-scale lunar impact craters

    • In the field of lunar surface impact crater recognition, experts have proposed an anchor free deep convolutional neural network automatic recognition method based on transfer learning, which effectively solves the problem of small-scale impact crater recognition and provides a new solution for lunar surface dating research.
    • Vol. 29, Issue 2, Pages: 429-441(2025)   

      Received:14 June 2023

      Published:07 February 2025

    • DOI: 10.11834/jrs.20243206     

    移动端阅览

  • Zhang Z X,Yang J T,Li L,Zhang S W,Yang Z Y and Ma Y C. 2025. Automatic anchor-free convolutional neural network method for recognizing small-scale lunar impact craters. National Remote Sensing Bulletin, 29(2):429-441 DOI: 10.11834/jrs.20243206.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Li Lin 北京控制工程研究所空间光电测量与感知实验室
Zhang Shuowei 山东科技大学地球科学与工程学院
Yang Ziyi 山东科技大学测绘与空间信息学院
Ma Yuechao 北京控制工程研究所空间光电测量与感知实验室
SHAO Pan 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
GAO Zi’ang 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
LEI Xiangda 南京信息工程大学 遥感与测绘工程学院
GUAN Haiyan 南京信息工程大学 遥感与测绘工程学院

相关机构

Hubei Key Laboratory of Intelligent Vision Monitoring for Hydroelectric Engineering, China Three Gorges University
College of Computer and Information Technology, China Three Gores University
School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology
State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University
School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology
0