Intelligent Remote Sensing for Disaster Prevention and Mitigation | Views : 0 下载量: 153 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Spatial and temporal prediction of ground subsidence in mining areas considering seasonal characteristics

    • In the field of predicting ground subsidence in mining areas, experts have proposed the SFF PredRNN model, which provides effective data support for the prevention and control of subsidence disasters in mining areas.
    • Vol. 28, Issue 11, Pages: 3016-3031(2024)   

      Published: 07 November 2024

    • DOI: 10.11834/jrs.20243488     

    移动端阅览

  • Guo X W and Chen T. 2024. Spatial and temporal prediction of ground subsidence in mining areas considering seasonal characteristics. National Remote Sensing Bulletin, 28(11):3016-3031 DOI: 10.11834/jrs.20243488.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Qinghao LIU 中南大学 地球科学与信息物理学院;中国测绘科学研究院
Huimin LIU 中南大学 地球科学与信息物理学院
Yonghong ZHANG 中国测绘科学研究院
Min DENG 中南大学 地球科学与信息物理学院
Hong’an WU 中国测绘科学研究院
Huimin LIU 中南大学 地球科学与信息物理学院
Hongan WU 中国测绘科学研究院
Min DENG 中南大学 地球科学与信息物理学院

相关机构

College of Earth Sciences and Information Physics, Central South University
Chinese Academy of Surveying and Mapping
Beibu Gulf Ocean Development Research Center, Guangxi Key Laboratory of Marine Environmental Change and Disaster in Beibu Gulf, Beibu Gulf University
Collage of Resources and Environment, Key Laboratory of Marine Geographic Information Resources Development and Utilization, Beibu Gulf University
Institute of Radar Remote Sensing Applications for Traffic Surveying and Mapping, Changsha University of Science & Technology
0