Research Progress | Views : 0 下载量: 155 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Progress and prospect of tropical cyclone intensity estimation based on deep learning

    • Deep learning technology has made new progress in the field of tropical cyclone intensity estimation, providing new ideas for improving accuracy and generalization ability.
    • Vol. 29, Issue 4, Pages: 829-843(2025)   

      Received:12 July 2023

      Published:07 April 2025

    • DOI: 10.11834/jrs.20253173     

    移动端阅览

  • Zhao Z T,Zhang Z,Cui L L,Tang P and Wang Q. 2025. Progress and prospect of tropical cyclone intensity estimation based on deep learning. National Remote Sensing Bulletin, 29(4):829-843 DOI: 10.11834/jrs.20253173.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

GAO Bo 太原理工大学 矿业工程学院
HAO Xiaohua 中国科学院西北生态环境资源研究院甘肃省遥感重点实验室;中国科学院西北生态环境资源研究院黑河遥感试验研究站
HE Dongcai 太原理工大学 矿业工程学院
ZHAO Qin 中国科学院西北生态环境资源研究院甘肃省遥感重点实验室
JI Wenzheng 中国科学院西北生态环境资源研究院甘肃省遥感重点实验室
REN Hongrui 太原理工大学 矿业工程学院
LI Hongyi 中国科学院西北生态环境资源研究院甘肃省遥感重点实验室;中国科学院西北生态环境资源研究院黑河遥感试验研究站
LIU Yan 中国气象局乌鲁木齐沙漠气象研究所;新疆塔克拉玛干沙漠气象国家野外科学观测研究站

相关机构

College of Mining Engineering, Taiyuan University of Technology
Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Institute of Desert Meteorology, China Meteorological Administration
Xinjiang Taklamakan Desert Meteorological National Field Scientific Observation and Research Station
0