Technologies and Methodologies | Views : 0 下载量: 958 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Advances in graph neural network-based hyperspectral remote sensing image classification

    • Remote sensing technology is developing rapidly, and hyperspectral images have become a key data source. Deep learning pattern recognition algorithms are constantly breaking through, and graph neural networks are widely used in hyperspectral remote sensing image interpretation, mining relationships between samples and generating high-precision classification results. Experts analyze graph neural network methods from the perspectives of graph connections, graph nodes, and network models, providing direction and ideas for research in the field of remote sensing.
    • Vol. 29, Issue 6, Pages: 1681-1704(2025)   

      Received:12 July 2024

      Published:07 June 2025

    • DOI: 10.11834/jrs.20254290     

    移动端阅览

  • Li J, Yu L, Duan Y L and Zhuo L. 2025. Advances in graph neural network-based hyperspectral remote sensing image classification. National Remote Sensing Bulletin, 29(6):1681-1704 DOI: 10.11834/jrs.20254290.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

LI Jun 中国地质大学 计算机学院, 智能地质信息处理湖北省重点实验室
DUAN Yilin 中国地质大学 计算机学院, 智能地质信息处理湖北省重点实验室
QU Bo 中国科学院西安光学精密机械研究所 光谱成像技术实验室;西安交通大学 信息与通信工程学院;中国科学院大学
ZHENG Xiangtao 中国科学院西安光学精密机械研究所 光谱成像技术实验室
QIAN Xueming 西安交通大学 信息与通信工程学院
LU Xiaoqiang 中国科学院西安光学精密机械研究所 光谱成像技术实验室
SU Yuanchao 西安科技大学 测绘科学与技术学院;中国科学院空天信息创新研究院 计算光学成像技术院重点实验室
XU Ruoqing 西安科技大学 测绘科学与技术学院

相关机构

Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, University of Geosciences
Key Laboratory of Spectral Imaging Technology CAS, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences
School of Information and Communication Engineering, Xi'an Jiaotong University
University of Chinese Academy of Sciences
College of Geomatic, Xi'an University of Science and Technology
0