InSAR Deformation Monitoring | Views : 0 下载量: 535 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Self-supervised contrastive learning clustering method for InSAR time series deformation data

    • In the field of InSAR deformation monitoring, researchers have proposed a deep clustering method based on self supervised contrastive learning, which effectively improves the classification accuracy and robustness of time series deformation data, providing a new solution for geological hazard monitoring.
    • Vol. 29, Issue 7, Pages: 2442-2456(2025)   

      Received:23 September 2024

      Published:07 July 2025

    • DOI: 10.11834/jrs.20254393     

    移动端阅览

  • Wu H F,Feng B,Li M H,Yang M S,Zhang Z and Tang B H. 2025. Self-supervised contrastive learning clustering method for InSAR time series deformation data. National Remote Sensing Bulletin, 29(7):2442-2456 DOI: 10.11834/jrs.20254393.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

WU Huayi 国家地理信息系统工程技术研究中心
YANG Chao 武汉大学 测绘遥感信息工程国家重点实验室
LI Zhenqiang 武汉大学 测绘遥感信息工程国家重点实验室
QING Yaxian 国家地理信息系统工程技术研究中心
JIN Zhun 中国地质大学(武汉) 地理与信息工程学院
MA Xinyue 中移(杭州)信息技术有限公司
QI Kunlun 中国地质大学(武汉) 地理与信息工程学院;国家地理信息系统工程技术研究中心
ZHENG Zhizhong 南京邮电大学 计算机学院;江苏省航空对地探测与智能感知工程研究中心

相关机构

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University
National Engineering Research Center of Geographic Information System
(Hangzhou) Information Technology Co., Ltd.
School of Geography and Information Engineering, China University of Geosciences
Jiangsu Province Engineering Research Center of Airborne Detecting and Intelligent Perceptive Technology
0