Chinese Satellites | Views : 0 下载量: 402 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Sea surface temperature reconstruction based on deep learning and its application on the spatiotemporal analysis of SST variation in the South China Sea

    • The latest research utilizes the I-DINCAE model and DNN technology to successfully reconstruct sea surface temperature data in the South China Sea, revealing its spatiotemporal variation characteristics and providing new algorithms for ocean research.
    • Vol. 29, Issue 7, Pages: 2382-2398(2025)   

      Received:07 November 2024

      Published:07 July 2025

    • DOI: 10.11834/jrs.20254493     

    移动端阅览

  • Sun Z W,Li Y B,Zhang D J,Sun S J and Chen S Y. 2025. Sea surface temperature reconstruction based on deep learning and its application on the spatiotemporal analysis of SST variation in the South China Sea. National Remote Sensing Bulletin, 29(7):2382-2398 DOI: 10.11834/jrs.20254493.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Chen Siyu 中山大学海洋科学学院
Zhang Dianjun 中山大学海洋科学学院
Sun Shaojie 天津大学海洋科学与技术学院
TAO Shengli 北京大学 城市与环境学院 生态研究中心 植被结构功能与建造全国重点实验室
WANG Di 西安交通大学 软件学院
XIE Huan 同济大学 测绘与地理信息学院
ZHANG Wuming 中山大学 测绘科学与技术学院
ZHANG Zhiming 云南大学 生态与环境学院

相关机构

Institute of Ecology, College of Urban and Environmental Sciences, and State Key Laboratory for Vegetation Structure, Function and Construction (VegLab), Peking University
School of Software Engineering, Xi'an Jiaotong University
College of Surveying and Geo-Informatics, Tongji University
School of Geospatial Engineering and Science, Sun Yat-sen University
School of Ecology and Environmental Sciences, Yunnan University
0