Chinese Satellites | Views : 0 下载量: 1798 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Sea surface temperature reconstruction based on deep learning and its application on the spatiotemporal analysis of SST variation in the South China Sea

    • The latest research utilizes the I-DINCAE model and DNN technology to successfully reconstruct sea surface temperature data in the South China Sea, revealing its spatiotemporal variation characteristics.
    • Vol. 29, Issue 7, Pages: 2382-2398(2025)   

      Received:07 November 2024

      Published:07 July 2025

    • DOI: 10.11834/jrs.20254493     

    移动端阅览

  • Sun Z W,Li Y B,Zhang D J,Sun S J and Chen S Y. 2025. Sea surface temperature reconstruction based on deep learning and its application on the spatiotemporal analysis of SST variation in the South China Sea. National Remote Sensing Bulletin, 29(7):2382-2398 DOI: 10.11834/jrs.20254493.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Chen Siyu 中山大学海洋科学学院
Zhang Dianjun 中山大学海洋科学学院
SUN Zhiwei 天津大学 海洋科学与技术学院;北京吉威数源信息技术有限公司
Sun Shaojie 天津大学海洋科学与技术学院
DENG Liwei 中国地质大学 计算机学院;桂林理工大学 测绘地理信息学院
ZHANG Hongyan 中国地质大学 计算机学院
FU Bolin 桂林理工大学 测绘地理信息学院;中国地质大学 计算机学院
KU Minfan 湖北大学 资源环境学院

相关机构

China University of Geosciences, School of Computer Science
Guilin University of Technology, College of Geomatics and Geoinformation
Faculty of Resources and Environmental Science, Hubei University
Tianjin Key Laboratory of Rail Transit Navigation Positioning and Spatio-temporal Big Data Technology
China Railway Design Group Limited
0