Remote Sensing Applications | Views : 0 下载量: 773 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Research and application of forestry and grassland remote sensing technology in China: Recent progress, challenges and countermeasures

    • In the context of the integration of artificial intelligence and remote sensing technology, forest and grassland remote sensing technology has made significant progress in land type recognition, change detection, and other fields, providing important support for the construction of national ecological civilization. Experts are building an integrated monitoring technology system for the sky and earth, promoting the comprehensive business application of forest and grassland remote sensing technology.
    • Vol. 29, Issue 6, Pages: 1804-1830(2025)   

      Received:25 January 2025

      Published:07 June 2025

    • DOI: 10.11834/jrs.20255044     

    移动端阅览

  • Li Z Y, Chen E X, Qin X L, Guo Y, Tian X, Liu Q W, Sun B, Zhao L, Cai S S, Du L M, Yu L F and Wang C J. 2025. Research and application of forestry and grassland remote sensing technology in China: Recent progress, challenges and countermeasures. National Remote Sensing Bulletin, 29(6):1804-1830 DOI: 10.11834/jrs.20255044.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

RUAN Chao 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心
HUANG Wenjiang 中国科学院空天信息创新研究院 遥感与数字地球全国重点实验室
ZHANG Jingcheng 杭州电子科技大学 自动化学院
HUANG Linsheng 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心
DONG Yingying 中国科学院空天信息创新研究院 遥感与数字地球全国重点实验室
ZHAO Jinling 安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心
YUAN Lin 浙江水利水电学院 计算机科学与技术学院
LIU Linyi 中国科学院空天信息创新研究院 遥感与数字地球全国重点实验室

相关机构

School of Computer Science and Technology, Zhejiang University of Water Resources and Electric Power
National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University
School of Automation, Hangzhou Dianzi University
State Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences
School of Geographic Science and Remote Sensing, Guangzhou University
0