动物遥感与遥测的研究进展与挑战
Research advances and challenges in animal remote sensing and telemetry
- 2025年29卷第10期 页码:2859-2890
收稿:2024-10-16,
纸质出版:2025-10-07
DOI: 10.11834/jrs.20254437
移动端阅览
收稿:2024-10-16,
纸质出版:2025-10-07
移动端阅览
动物遥感与遥测的核心思想是利用对动物最小化干扰的现代技术手段,来监测和研究动物及其生态环境。其具体是通过利用卫星、无人机、雷达、声学标签或深度相机等多种工具,在不对动物造成任何物理接触或最小化干扰的情况下,收集有关动物行为、种群动态、个体生长状态等方面的数据,帮助研究者深入了解动物行为习惯、动物与环境之间的关系及动物健康状态等信息,在野生动物监测和保护、精准畜牧、智慧渔业等领域有着广泛的应用前景。近年来,动物遥感与遥测技术迅猛发展,呈现出百花齐放的趋势。但是,目前依然缺乏对动物遥感与遥测最新研究进展的相关综述。针对上述问题,本文聚焦动物遥感与遥测领域的研究现状,从野生动物与家养动物方面进行阐述,系统性概括动物遥感领域内研究的最新进展。首先,本文对动物遥感与遥测领域相关论文进行文献分析,梳理其发展历程及趋势;其次,本文基于研究对象的不同,介绍了野生动物的栖息地选择与利用、迁徙、分布以及动物数量估计等研究,同时也对家养动物的体尺信息、重量及家养动物草原畜群分布、放牧行为等方面的研究进展进行了介绍。最后,对动物遥感与遥测领域的研究现状进行总结并展望了其未来发展趋势,以期促进该领域的深入研究与广泛应用。
The core concept of animal remote sensing and telemetry is to employ modern technological methods that minimize disturbance to animals when monitoring and studying their behavior and surrounding ecosystems. Technologies such as satellites
drones
radar
acoustic tags
and depth cameras are used to collect data on animal behavior
population dynamics
and individual growth without direct physical contact. These tools enable researchers to understand animals’ behavioral patterns
health status
and interactions with their environment
thus offering broad applications in wildlife conservation
precision livestock farming
and smart fisheries. In recent years
these technologies have developed rapidly amid the emergence of a wide variety of approaches. However
comprehensive reviews that summarize the latest advancements in this field remain insufficient. This study addresses this gap by systematically reviewing recent developments in animal remote sensing and telemetry with a focus on wild and domesticated animals. It analyzes the relevant literature to trace historical trends and research trajectories. Subsequently
it examines studies on wildlife habitat selection
migration
distribution
and population estimation
as well as research concerning the body size
weight estimation
herd distribution
and grazing behavior of domestic animals. Finally
the paper summarizes the current state of the field and discusses future directions to promote additional research and the widespread application of animal remote sensing and telemetry technologies.
Acebes P , Malo J E and Traba J . 2013 . Trade-offs between food availability and predation risk in desert environments: the case of polygynous monomorphic guanaco ( Lama guanicoe ) . Journal of Arid Environments , 97 : 136 - 142 [ DOI: 10.1016/j.jaridenv.2013.05.017 http://dx.doi.org/10.1016/j.jaridenv.2013.05.017 ]
Akkaynak D , Allen J J , Mäthger L M , Chiao C C and Hanlon R T . 2013 . Quantification of cuttlefish ( Sepia officinalis ) camouflage: a study of color and luminance using in situ spectrometry . Journal of Comparative Physiology A , 199 ( 3 ): 211 - 225 [ DOI: 10.1007/s00359-012-0785-3 http://dx.doi.org/10.1007/s00359-012-0785-3 ]
Albornoz R I , Giri K , Hannah M C and Wales W J . 2022 . An improved approach to automated measurement of body condition score in dairy cows using a three-dimensional camera system . Animals , 12 ( 1 ): 72 [ DOI: 10.3390/ani12010072 http://dx.doi.org/10.3390/ani12010072 ]
Al-Naji A , Tao Y T , Smith I and Chahl J . 2019 . A pilot study for estimating the cardiopulmonary signals of diverse exotic animals using a digital camera . Sensors , 19 ( 24 ): 5445 [ DOI: 10.3390/s19245445 http://dx.doi.org/10.3390/s19245445 ]
Bacheler N M , Shertzer K W , Cheshire R T and Macmahan J H . 2019 . Tropical storms influence the movement behavior of a demersal oceanic fish species . Scientific Reports , 9 : 1481 [ DOI: 10.1038/s41598-018-37527-1 http://dx.doi.org/10.1038/s41598-018-37527-1 ]
Bartlam-Brooks H L A , Beck P S A , Bohrer G and Harris S . 2013 . In search of greener pastures: using satellite images to predict the effects of environmental change on zebra migration . Journal of Geophysical Research: Biogeosciences , 118 ( 4 ): 1427 - 1437 [ DOI: 10.1002/jgrg.20096 http://dx.doi.org/10.1002/jgrg.20096 ]
Basedow S L , Mckee D , Lefering I , Gislason A , Daase M , Trudnowska E , Egeland E S , Choquet M and Falk-Petersen S . 2019 . Remote sensing of zooplankton swarms . Scientific Reports , 9 : 686 [ DOI: 10.1038/s41598-018-37129-x http://dx.doi.org/10.1038/s41598-018-37129-x ]
Brown C and Byrnes E E . 2022a . Small-scale movement and migration cues of Australian bass ( Percalates novemaculeata ) in an urbanised river . Marine and Freshwater Research , 73 ( 6 ): 742 - 753 [ DOI: 10.1071/MF21238 http://dx.doi.org/10.1071/MF21238 ]
Brown J , Qiao Y L , Clark C , Lomax S , Rafique K and Sukkarieh S . 2022b . Automated aerial animal detection when spatial resolution conditions are varied . Computers and Electronics in Agriculture , 193 : 106689 [ DOI: 10.1016/j.compag.2022.106689 http://dx.doi.org/10.1016/j.compag.2022.106689 ]
Brownscombe J W , Shipley O N , Griffin L P , Morley D , Acosta A , Adams A J , Boucek R , Danylchuk A J , Cooke S J and Power M . 2022 . Application of telemetry and stable isotope analyses to inform the resource ecology and management of a marine fish . Journal of Applied Ecology , 59 ( 4 ): 1110 - 1121 [ DOI: 10.1111/1365-2664.14123 http://dx.doi.org/10.1111/1365-2664.14123 ]
Cang Y , He H X and Qiao Y L . 2019 . An intelligent pig weights estimate method based on deep learning in sow stall environments . IEEE Access , 7 : 164867 - 164875 [ DOI: 10.1109/ACCESS.2019.2953099 http://dx.doi.org/10.1109/ACCESS.2019.2953099 ]
Capello M , Robert M , Soria M , Potin G , Itano D , Holland K , Deneubourg J L and Dagorn L . 2015 . A methodological framework to estimate the site fidelity of tagged animals using passive acoustic telemetry . PLoS One , 10 ( 8 ): e 0134002 [ DOI: 10.1371/journal.pone.0134002 http://dx.doi.org/10.1371/journal.pone.0134002 ]
Caravaggi A , Banks P B , Burton A C , Finlay C M V , Haswell P M , Hayward M W , Rowcliffe M J and Wood M D . 2017 . A review of camera trapping for conservation behaviour research . Remote Sensing in Ecology and Conservation , 3 ( 3 ): 109 - 122 [ DOI: 10.1002/rse2.48 http://dx.doi.org/10.1002/rse2.48 ]
Chabot D , Dillon C and Francis C M . 2018 . An approach for using off-the-shelf object-based image analysis software to detect and count birds in large volumes of aerial imagery . Avian Conservation and Ecology , 13 ( 1 ): 15 [ DOI: 10.5751/ACE-01205-130115 http://dx.doi.org/10.5751/ACE-01205-130115 ]
Chen A , Jacob M , Shoshani G and Charter M . 2023 . Using computer vision, image analysis and UAVs for the automatic recognition and counting of common cranes ( Grus grus ) . Journal of Environmental Management , 328 : 116948 [ DOI: 10.1016/j.jenvman.2022.116948 http://dx.doi.org/10.1016/j.jenvman.2022.116948 ]
Chen B A , Feng Q L , Niu B W , Yan F Q , Gao B B , Yang J Y , Gong J H and Liu J T . 2022 . Multi-modal fusion of satellite and street-view images for urban village classification based on a dual-branch deep neural network . International Journal of Applied Earth Observation and Geoinformation , 109 : 102794 [ DOI: 10.1016/j.jag.2022.102794 http://dx.doi.org/10.1016/j.jag.2022.102794 ]
Chen Y , Zhang Y W , Lei J H and Li L . 2022 . Automatic extraction method for gait parameters of quadruped walking based on computer vision . Laser and Optoelectronics Progress , 59 ( 8 ): 0815006
陈瑶 , 张云伟 , 雷金辉 , 黎丽 . 2022 . 基于计算机视觉的四足动物行走步态参数自动提取方法 . 激光与光电子学进展 , 59 ( 8 ): 0815006 [ DOI: 10.3788/LOP202259.0815006 http://dx.doi.org/10.3788/LOP202259.0815006 ]
Cihan P , Saygili A , Ozmen N E and Akyuzlu M . 2023 . Identification and recognition of animals from biometric markers using computer vision approaches: a review . Kafkas Universitesi Veteriner Fakultesi Dergisi , 29 ( 6 ): 581 - 593 [ DOI: 10.9775/kvfd.2023.30265 http://dx.doi.org/10.9775/kvfd.2023.30265 ]
Corcoran E , Winsen M , Sudholz A and Hamilton G . 2021 . Automated detection of wildlife using drones: synthesis, opportunities and constraints . Methods in Ecology and Evolution , 12 ( 6 ): 1103 - 1114 [ DOI: 10.1111/2041-210X.13581 http://dx.doi.org/10.1111/2041-210X.13581 ]
Corrêa A A , Quoos J H , Barreto A S , Groch K R and Eichler P P B . 2022 . Use of satellite imagery to identify southern right whales ( Eubalaena australis ) on a Southwest Atlantic Ocean breeding ground . Marine Mammal Science , 38 ( 1 ): 87 - 101 [ DOI: 10.1111/mms.12847 http://dx.doi.org/10.1111/mms.12847 ]
Cubaynes H C , Fretwell P T , Bamford C , Gerrish L and Jackson J A . 2019 . Whales from space: four mysticete species described using new VHR satellite imagery . Marine Mammal Science , 35 ( 2 ): 466 - 491 [ DOI: 10.1111/mms.12544 http://dx.doi.org/10.1111/mms.12544 ]
Cui K , Hu C , Wang R , Li S W , Wu D L and Ma S Q . 2019 . Extracting vertical distribution of aerial migratory animals using weather radar // 2019 International Applied Computational Electromagnetics Society Symposium - China (ACES) . Nanjing : IEEE: 1 - 2 [ DOI: 10.23919/aces48530.2019.9060648 http://dx.doi.org/10.23919/aces48530.2019.9060648 ]
Dearborn K D and Danby R K . 2022 . Remotely sensed trends in vegetation productivity and phenology during population decline of the Bathurst caribou ( Rangifer tarandus groenlandicus ) herd . Arctic Science , 8 ( 1 ): 228 - 251 [ DOI: 10.1139/as-2021-0003 http://dx.doi.org/10.1139/as-2021-0003 ]
Dhellemmes F , Aspillaga E , Rittweg T , Alós J , Möller P and Arlinghaus R . 2023 . Body size scaling of space use in coastal pike ( Esox lucius ) in brackish lagoons of the southern Baltic Sea . Fisheries Research , 260 : 106560 [ DOI: 10.1016/j.fishres.2022.106560 http://dx.doi.org/10.1016/j.fishres.2022.106560 ]
Doherty P D , Baxter J M , Gell F R , Godley B J , Graham R T , Hall G , Hall J , Hawkes L A , Henderson S M , Johnson L , Speedie C and Witt M J . 2017 . Long-term satellite tracking reveals variable seasonal migration strategies of basking sharks in the north-east Atlantic . Scientific Reports , 7 : 42837 [ DOI: 10.1038/srep42837 http://dx.doi.org/10.1038/srep42837 ]
Double M C , Andrews-Goff V , Jenner K C S , Jenner M N , Laverick S M , Branch T A and Gales N J . 2014 . Migratory movements of pygmy blue whales ( Balaenoptera musculus brevicauda ) between Australia and Indonesia as revealed by satellite telemetry . PLoS One , 9 ( 4 ): e 93578 [ DOI: 10.1371/journal.pone.0093578 http://dx.doi.org/10.1371/journal.pone.0093578 ]
Du A , Guo H , Lu J , Su Y , Ma Q , Ruchay A , Marinello F and Pezzuolo A . 2022 . Automatic livestock body measurement based on keypoint detection with multiple depth cameras . Computers and Electronics in Agriculture , 198 : 107059 [ DOI: 10.1016/j.compag.2022.107059 http://dx.doi.org/10.1016/j.compag.2022.107059 ]
Duporge I , Isupova O , Reece S , Macdonald D W and Wang T J . 2021 . Using very-high-resolution satellite imagery and deep learning to detect and count African elephants in heterogeneous landscapes . Remote Sensing in Ecology and Conservation , 7 ( 3 ): 369 - 381 [ DOI: 10.1002/rse2.195 http://dx.doi.org/10.1002/rse2.195 ]
Evans D R , Carthy R R and Ceriani S A . 2019 . Migration routes, foraging behavior, and site fidelity of loggerhead sea turtles ( Caretta caretta ) satellite tracked from a globally important rookery . Marine Biology , 166 ( 10 ): 134 [ DOI: 10.1007/s00227-019-3583-4 http://dx.doi.org/10.1007/s00227-019-3583-4 ]
Garcia-Quintas A , Roy A , Barbraud C , Demarcq H , Denis D and Bertrand S L . 2023 . Machine and deep learning approaches to understand and predict habitat suitability for seabird breeding . Ecology and Evolution , 13 ( 9 ): e 10549 [ DOI: 10.1002/ece3.10549 http://dx.doi.org/10.1002/ece3.10549 ]
Gerber K M , Mather M E , Smith J M and Peterson Z J . 2019 . Multiple metrics provide context for the distribution of a highly mobile fish predator, the blue catfish . Ecology of Freshwater Fish , 28 ( 1 ): 141 - 155 [ DOI: 10.1111/eff.12438 http://dx.doi.org/10.1111/eff.12438 ]
Gibb R , Shoji A , Fayet A L , Perrins C M , Guilford T and Freeman R . 2017 . Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird . Journal of the Royal Society Interface , 14 ( 132 ): 20170262 [ DOI: 10.1098/rsif.2017.0262 http://dx.doi.org/10.1098/rsif.2017.0262 ]
Gomez Villa A , Salazar A and Vargas F . 2017 . Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks . Ecological Informatics , 41 : 24 - 32 [ DOI: 10.1016/j.ecoinf.2017.07.004 http://dx.doi.org/10.1016/j.ecoinf.2017.07.004 ]
Guo H , Ma Q , Zhang S L , Su W , Zhu D H and Gao Y B . 2014 . Prototype system of shape measurements of animal based on 3D reconstruction . Transactions of the Chinese Society for Agricultural Machinery , 45 ( 5 ): 227 - 232 , 246
郭浩 , 马钦 , 张胜利 , 苏伟 , 朱德海 , 郜允兵 . 2014 . 基于三维重建的动物体尺获取原型系统 . 农业机械学报 , 45 ( 5 ): 227- 232 , 246 [ DOI: 10.6041/j.issn.1000-1298.2014.05.035 http://dx.doi.org/10.6041/j.issn.1000-1298.2014.05.035 ]
Guo X J and Shao Q Q . 2023 . Population of kiangs and spatio-temporal variation of its habitat in Sanjiangyuan National Park based on unmanned aerial vehicle remote sensing . Acta Ecologica Sinica , 43 ( 19 ): 7886 - 7895
郭兴健 , 邵全琴 . 2023 . 基于无人机遥感的三江源国家公园藏野驴种群数量及生境时空变化研究 . 生态学报 , 43 ( 19 ): 7886 - 7895 [ DOI: 10.20103/j.stxb.202207282161 http://dx.doi.org/10.20103/j.stxb.202207282161 ]
Guo X J , Shao Q Q , Yang F , Li Y Z , Wang Y C and Wang D L . 2019 . Using UAV remote sensing for a population census of blue sheep ( Pseudois nayaur ) in Maduo county, source region of the Yellow River . Journal of Natural Resources , 34 ( 5 ): 1054 - 1065
郭兴健 , 邵全琴 , 杨帆 , 李愈哲 , 汪阳春 , 王东亮 . 2019 . 无人机遥感调查黄河源玛多县岩羊数量及分布 . 自然资源学报 , 34 ( 5 ): 1054 - 1065 [ DOI: 10.31497/zrzyxb.20190512 http://dx.doi.org/10.31497/zrzyxb.20190512 ]
Gurel N Z , Jeong H K , Kloefkorn H , Hochman S and Iran O T . 2018 . Unobtrusive heartbeat detection from mice using sensors embedded in the nest // 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . Honolulu : IEEE: 1604 - 1607 [ DOI: 10.1109/EMBC.2018.8512611 http://dx.doi.org/10.1109/EMBC.2018.8512611 ]
Hays G C and Scott R . 2013 . Global patterns for upper ceilings on migration distance in sea turtles and comparisons with fish, birds and mammals . Functional Ecology , 27 ( 3 ): 748 - 756 [ DOI: 10.1111/1365-2435.12073 http://dx.doi.org/10.1111/1365-2435.12073 ]
He A , Li X B , Wu X M , Su C Y , Chen J , Xu S and Guo X B . 2024 . ALSS-YOLO: an adaptive lightweight channel split and shuffling network for TIR wildlife detection in UAV imagery . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 17 : 17308 - 17326 [ DOI: 10.1109/JSTARS.2024.3461172 http://dx.doi.org/10.1109/JSTARS.2024.3461172 ]
He C , Qiao Y L , Mao R , Li M and Wang M L . 2023a . Enhanced LiteHRNet based sheep weight estimation using RGB-D images . Computers and Electronics in Agriculture , 206 : 107667 [ DOI: 10.1016/j.compag.2023.107667 http://dx.doi.org/10.1016/j.compag.2023.107667 ]
He H X , Chen C Y , Zhang W W , Wang Z W and Zhang X F . 2023b . Body condition scoring network based on improved YOLOX . Pattern Analysis and Applications , 26 ( 3 ): 1071 - 1087 [ DOI: 10.1007/s10044-023-01171-x http://dx.doi.org/10.1007/s10044-023-01171-x ]
He H X , Qiao Y L , Li X M , Chen C Y and Zhang X F . 2021 . Automatic weight measurement of pigs based on 3D images and regression network . Computers and Electronics in Agriculture , 187 : 106299 [ DOI: 10.1016/j.compag.2021.106299 http://dx.doi.org/10.1016/j.compag.2021.106299 ]
He K , Fan C J , Zhong M C , Cao F L , Wang G B and Cao L . 2023c . Evaluation of habitat suitability for Asian elephants in Sipsongpanna under climate change by coupling multi-source remote sensing products with MaxEnt model . Remote Sensing , 15 ( 4 ): 1047 [ DOI: 10.3390/rs15041047 http://dx.doi.org/10.3390/rs15041047 ]
Hitelman A , Edan Y , Godo A , Berenstein R , Lepar J and Halachmi I . 2022 . Biometric identification of sheep via a machine-vision system . Computers and Electronics in Agriculture , 194 : 106713 [ DOI: 10.1016/j.compag.2022.106713 http://dx.doi.org/10.1016/j.compag.2022.106713 ]
Hou Z X , Huang L , Zhang Q and Miao Y S . 2023 . Body weight estimation of beef cattle with 3D deep learning model: PointNet++ . Computers and Electronics in Agriculture , 213 : 108184 [ DOI: 10.1016/j.compag.2023.108184 http://dx.doi.org/10.1016/j.compag.2023.108184 ]
Hua A , Martin K , Shen Y Z , Chen N , Mou C , Sterk M , Reinhard B , Reinhard F F , Lee S , Alibhai S and Jewell Z C . 2022 . Protecting endangered megafauna through AI analysis of drone images in a low-connectivity setting: a case study from Namibia . PeerJ , 10 : e 13779 [ DOI: 10.7717/peerj.13779 http://dx.doi.org/10.7717/peerj.13779 ]
Hughey L F , Shoemaker K T , Stewart K M , McCauley D J and Cushman J H . 2021 . Effects of human-altered landscapes on a reintroduced ungulate: patterns of habitat selection at the rangeland-wildland interface . Biological Conservation , 257 : 109086 [ DOI: 10.1016/j.biocon.2021.109086 http://dx.doi.org/10.1016/j.biocon.2021.109086 ]
Institute of Botany, the Chinese Academy of Sciences . 2020 . Method and system for recognizing cattle and sheep based on remote sensing images . China, CN 111339912 A
中国科学院植物研究所 . 2020 . 一种基于遥感影像识别牛羊的方法和系统 . 中国, CN 111339912 A
Ivanova S , Prosekov A and Kaledin A . 2022 . A survey on monitoring of wild animals during fires using drones . Fire , 5 ( 3 ): 60 [ DOI: 10.3390/fire5030060 http://dx.doi.org/10.3390/fire5030060 ]
Ivanova S V , Kessel S T , Espinoza M , McLean M F , O’Neill C , Landry J , Hussey N E , Williams R , Vagle S and Fisk A T . 2020 . Shipping alters the movement and behavior of Arctic cod ( Boreogadus saida ), a keystone fish in Arctic marine ecosystems . Ecological Applications , 30 ( 3 ): e 02050 [ DOI: 10.1002/eap.2050 http://dx.doi.org/10.1002/eap.2050 ]
Jain A D , Ignisca A , Yi D H , Ratilal P and Makris N C . 2014 . Feasibility of Ocean Acoustic Waveguide Remote Sensing (OAWRS) of Atlantic cod with seafloor scattering limitations . Remote Sensing , 6 ( 1 ): 180 - 208 [ DOI: 10.3390/rs6010180 http://dx.doi.org/10.3390/rs6010180 ]
Joshi A R , Dinerstein E , Wikramanayake E , Anderson M L , Olson D , Jones B S , Seidensticker J , Lumpkin S , Hansen M C , Sizer N C , Davis C L , Palminteri S and Hahn N R . 2016 . Tracking changes and preventing loss in critical tiger habitat . Science Advances , 2 ( 4 ): e 1501675 [ DOI: 10.1126/sciadv.1501675 http://dx.doi.org/10.1126/sciadv.1501675 ]
Kalan A K , Piel A K , Mundry R , Wittig R M , Boesch C and Kühl H S . 2016 . Passive acoustic monitoring reveals group ranging and territory use: a case study of wild chimpanzees ( Pan troglodytes ) . Frontiers in Zoology , 13 ( 1 ): 34 [ DOI: 10.1186/s12983-016-0167-8 http://dx.doi.org/10.1186/s12983-016-0167-8 ]
Kearney S P , Porensky L M , Augustine D J and Pellatz D W . 2023 . Toward broad-scale mapping and characterization of prairie dog colonies from airborne imagery using deep learning . Ecological Indicators , 154 : 110684 [ DOI: 10.1016/j.ecolind.2023.110684 http://dx.doi.org/10.1016/j.ecolind.2023.110684 ]
Kizenga H J , Jebri F , Shaghude Y , Raitsos D E , Srokosz M , Jacobs Z L , Nencioli F , Shalli M , Kyewalyanga M S and Popova E . 2021 . Variability of mackerel fish catch and remotely-sensed biophysical controls in the eastern Pemba Channel . Ocean and Coastal Management , 207 : 105593 [ DOI: 10.1016/j.ocecoaman.2021.105593 http://dx.doi.org/10.1016/j.ocecoaman.2021.105593 ]
Kongsro J . 2014 . Estimation of pig weight using a Microsoft Kinect prototype imaging system . Computers and Electronics in Agriculture , 109 : 32 - 35 [ DOI: 10.1016/j.compag.2014.08.008 http://dx.doi.org/10.1016/j.compag.2014.08.008 ]
Kusakunniran W , Wiratsudakul A , Chuachan U , Kanchanapreechakorn S and Imaromkul T . 2018 . Automatic cattle identification based on fusion of texture features extracted from muzzle images // 2018 IEEE International Conference on Industrial Technology (ICIT) . Lyon : IEEE: 1484 - 1489 [ DOI: 10.1109/ICIT.2018.8352400 http://dx.doi.org/10.1109/ICIT.2018.8352400 ]
Leblanc G , Francis C M , Soffer R , Kalacska M and de Gea J . 2016 . Spectral reflectance of polar bear and other large arctic mammal pelts; potential applications to remote sensing surveys . Remote Sensing , 8 ( 4 ): 273 [ DOI: 10.3390/rs8040273 http://dx.doi.org/10.3390/rs8040273 ]
Le Cozler Y , Allain C , Caillot A , Delouard J M , Delattre L , Luginbuhl T and Faverdin P . 2019 . High-precision scanning system for complete 3D cow body shape imaging and analysis of morphological traits . Computers and Electronics in Agriculture , 157 : 447 - 453 [ DOI: 10.1016/j.compag.2019.01.019 http://dx.doi.org/10.1016/j.compag.2019.01.019 ]
Lee Y C , Syakura A , Khalil M A , Wu C H , Ding Y F and Wang C W . 2021 . A real-time camera-based adaptive breathing monitoring system . Medical and Biological Engineering and Computing , 59 ( 6 ): 1285 - 1298 [ DOI: 10.1007/s11517-021-02371-5 http://dx.doi.org/10.1007/s11517-021-02371-5 ]
Li D R and Li M . 2014 . Research advance and application prospect of unmanned aerial vehicle remote sensing system . Geomatics and Information Science of Wuhan University , 39 ( 5 ): 505 - 513 , 540
李德仁 , 李明 . 2014 . 无人机遥感系统的研究进展与应用前景 . 武汉大学学报(信息科学版) , 39 ( 5 ): 505- 513 , 540 [ DOI: 10.13203/j.whugis20140045 http://dx.doi.org/10.13203/j.whugis20140045 ]
Li G , Chen X J , Lei L and Guan W J . 2014 . Distribution of hotspots of chub mackerel based on remote-sensing data in coastal waters of China . International Journal of Remote Sensing , 35 ( 11/12 ): 4399 - 4421 [ DOI: 10.1080/01431161.2014.916057 http://dx.doi.org/10.1080/01431161.2014.916057 ]
Li G , Sun W L , Zhang H and Gao C Y . 2014 . Balance between actual number of livestock and livestock carrying capacity of grassland after added forage of straw based on remote sensing in Tibetan Plateau . Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 30 ( 17 ): 200 - 211
李刚 , 孙炜琳 , 张华 , 高春雨 . 2014 . 基于秸秆补饲的青藏高原草地载畜量平衡遥感监测 . 农业工程学报 , 30 ( 17 ): 200 - 211 [ DOI: 10.3969/j.issn.1002-6819.2014.17.026 http://dx.doi.org/10.3969/j.issn.1002-6819.2014.17.026 ]
Li J Y , Qian F W , Zhang Y , Zhao L N , Deng W Q and Ma K M . 2023a . Identifying seasonal differences in migration characteristics of Oriental white stork ( Ciconia boyciana ) through satellite tracking and remote sensing . Ecological Indicators , 146 : 109760 [ DOI: 10.1016/j.ecolind.2022.109760 http://dx.doi.org/10.1016/j.ecolind.2022.109760 ]
Li J Y , Wang C Y , Pan W W , Du H , Zhang H , Wu J M and Wei Q W . 2021 . Migration and distribution of adult hatchery reared Yangtze sturgeons ( Acipenser dabryanus ) after releasing in the upper Yangtze River and its implications for stock enhancement . Journal of Applied Ichthyology , 37 ( 1 ): 3 - 11 [ DOI: 10.1111/jai.14117 http://dx.doi.org/10.1111/jai.14117 ]
Li X P , Xiang Y Y and Li S Q . 2023b . Combining convolutional and vision transformer structures for sheep face recognition . Computers and Electronics in Agriculture , 205 : 107651 [ DOI: 10.1016/j.compag.2023.107651 http://dx.doi.org/10.1016/j.compag.2023.107651 ]
Li Z , Mao T T , Liu T H and Teng G H . 2015 . Comparison and optimization of pig mass estimation models based on machine vision . Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 31 ( 2 ): 155 - 161
李卓 , 毛涛涛 , 刘同海 , 滕光辉 . 2015 . 基于机器视觉的猪体质量估测模型比较与优化 . 农业工程学报 , 31 ( 2 ): 155 - 161 [ DOI: 10.3969/j.issn.1002-6819.2015.02.022 http://dx.doi.org/10.3969/j.issn.1002-6819.2015.02.022 ]
Liu D . 2020 . Key Technology of Computer Vision in Precision Livestock Farming . Yangling : Northwest A and F University
刘冬 . 2020 . 精准畜牧中机器视觉关键技术研究及应用 . 杨凌 : 西北农林科技大学 [ DOI: 10.27409/d.cnki.gxbnu.2020.000058 http://dx.doi.org/10.27409/d.cnki.gxbnu.2020.000058 ]
Liu L L , Zhao Y J , Wang Q C , Cui G F , Yang N , Zheng C Y and Liu D . 2018 . Preliminary investigation of wildlife using camera traps along tourism routes in Beijing Baihua Mountain National Nature Reserve . Acta Ecologica Sinica , 38 ( 23 ): 8324 - 8335
刘雷雷 , 赵永健 , 王清春 , 崔国发 , 杨南 , 郑长燕 , 刘东 . 2018 . 基于红外相机陷阱法的北京百花山国家级自然保护区旅游线路周边野生动物的调查研究 . 生态学报 , 38 ( 23 ): 8324 - 8335 [ DOI: 10.5846/stxb201709191671 http://dx.doi.org/10.5846/stxb201709191671 ]
Liu T H . 2014 . Study of Pig’s Body Size Parameter Extraction Algorithm Optimization and Three-dimensional Reconstruction Based-on Binocular Stereo Vision . Beijing : China Agricultural University (刘同海 . 2014. 基于双目视觉的猪体体尺参数提取算法优化及三维重构 . 北京: 中国农业大学)
Liu X H , Devred E , Johnson C L , Keith D and Sameoto J A . 2021 . Using satellite remote sensing to improve the prediction of scallop condition in their natural environment: case study for Georges Bank, Canada . Remote Sensing of Environment , 254 : 112251 [ DOI: 10.1016/j.rse.2020.112251 http://dx.doi.org/10.1016/j.rse.2020.112251 ]
Lopez J , Schoonmaker J and Saggese S . 2014 . Automated detection of marine animals using multispectral imaging // 2014 Oceans . St. John’s : IEEE: 1 - 6 [ DOI: 10.1109/OCEANS.2014.7003132 http://dx.doi.org/10.1109/OCEANS.2014.7003132 ]
Łopucki R , Klich D and Kociuba P . 2022 . Detection of spatial avoidance between sousliks and moles by combining field observations, remote sensing and deep learning techniques . Scientific Reports , 12 : 8264 [ DOI: 10.1038/s41598-022-12405-z http://dx.doi.org/10.1038/s41598-022-12405-z ]
Lu H X , Zhang J L , Yuan X F , Lv J H , Zeng Z W , Guo H and Ruchay A . 2025 . Automatic coarse-to-fine method for cattle body measurement based on improved GCN and 3D parametric model . Computers and Electronics in Agriculture , 231 : 110017 [ DOI: 10.1016/j.compag.2025.110017 http://dx.doi.org/10.1016/j.compag.2025.110017 ]
Lubitz N , Daly R , Filmalter J D , Sheaves M , Cowley P D , Naesje T F and Barnett A . 2023 . Context drives movement patterns in a mobile marine predator . Movement Ecology , 11 ( 1 ): 28 [ DOI: 10.1186/s40462-023-00390-5 http://dx.doi.org/10.1186/s40462-023-00390-5 ]
Luo X Y , Hu Y H , Gao Z C , Guo H and Su Y . 2023 . Automated measurement of livestock body based on pose normalisation using statistical shape model . Biosystems Engineering , 227 : 36 - 51 [ DOI: 10.1016/j.biosystemseng.2023.01.016 http://dx.doi.org/10.1016/j.biosystemseng.2023.01.016 ]
Ma W H , Qi X Y , Sun Y , Gao R H , Ding L Y , Wang R , Peng C , Zhang J , Wu J W , Xu Z K , Li M Y , Zhao H Y , Huang S D and Li Q F . 2024a . Computer vision-based measurement techniques for livestock body dimension and weight: a review . Agriculture-Basel , 14 ( 2 ): 306 [ DOI: 10.3390/agriculture14020306 http://dx.doi.org/10.3390/agriculture14020306 ]
Ma Y W , Tan M Y , Liu X Y , Zhang Y J , Xu Z C , Sun W Q , Ge J P and Feng L M . 2025 . Deep learning for Amur tiger re-identification in camera traps: a tool assisting population monitoring and spatio-temporal analysis . Ecological Indicators , 171 : 113227 [ DOI: 10.1016/j.ecolind.2025.113227 http://dx.doi.org/10.1016/j.ecolind.2025.113227 ]
Ma Y Y , Liang F L , Wang P F , Yin Y , Zhang Y and Wang J Q . 2019 . Research on Identifying different life states based on the changes of vital signs of rabbit under water and food deprivation by UWB radar measurement // 2019 Photonics and Electromagnetics Research Symposium . Xiamen : IEEE: 397 - 403 [ DOI: 10.1109/PIERS-Fall48861.2019.9021392 http://dx.doi.org/10.1109/PIERS-Fall48861.2019.9021392 ]
Ma Z B , Dong Y Q , Xia Y , Xu D L , Xu F and Chen F X . 2024b . Wildlife real-time detection in complex forest scenes based on YOLOv5s deep learning network . Remote Sensing , 16 ( 8 ): 1350 [ DOI: 10.3390/rs16081350 http://dx.doi.org/10.3390/rs16081350 ]
Mahoney P J , Liston G E , Lapoint S , Gurarie E , Mangipane B , Wells A G , Brinkman T J , Eitel J U H , Hebblewhite M , Nolin A W , Boelman N and Prugh L R . 2018 . Navigating snowscapes: scale-dependent responses of mountain sheep to snowpack properties . Ecological Applications , 28 ( 7 ): 1715 - 1729 [ DOI: 10.1002/eap.1773 http://dx.doi.org/10.1002/eap.1773 ]
Makris N C , Godø O R , Yi D H , Macaulay G J , Jain A D , Cho B , Gong Z , Jech J M and Ratilal P . 2019 . Instantaneous areal population density of entire Atlantic cod and herring spawning groups and group size distribution relative to total spawning population . Fish and Fisheries , 20 ( 2 ): 201 - 213 [ DOI: 10.1111/faf.12331 http://dx.doi.org/10.1111/faf.12331 ]
Marston C G , Wilkinson D M , Sponheimer M , Codron D , Codron J and O’Regan H J . 2020 . ‘Remote’ behavioural ecology: do megaherbivores consume vegetation in proportion to its presence in the landscape? PeerJ , 8 : e 8622 [ DOI: 10.7717/peerj.8622 http://dx.doi.org/10.7717/peerj.8622 ]
Matley J K , Klinard N V , Larocque S M , Mclean M F , Brownscombe J W , Raby G D , Nguyen V M and Martins A P B . 2023 . Making the most of aquatic animal tracking: a review of complementary methods to bolster acoustic telemetry . Reviews in Fish Biology and Fisheries , 33 ( 1 ): 35 - 54 [ DOI: 10.1007/s11160-022-09738-3 http://dx.doi.org/10.1007/s11160-022-09738-3 ]
Mawer R , Bruneel S P , Pauwels I S , Elings J , Pickholtz E , Pickholtz R , Schneider M , Coeck J and Goethals P L M . 2023 . Individual variation in the habitat selection of upstream migrating fish near a barrier . Movement Ecology , 11 ( 1 ): 49 [ DOI: 10.1186/s40462-023-00414-0 http://dx.doi.org/10.1186/s40462-023-00414-0 ]
Miller P I , Scales K L , Ingram S N , Southall E J and Sims D W . 2015 . Basking sharks and oceanographic fronts: quantifying associations in the north-east Atlantic . Functional Ecology , 29 ( 8 ): 1099 - 1109 [ DOI: 10.1111/1365-2435.12423 http://dx.doi.org/10.1111/1365-2435.12423 ]
Mitamura H , Wada T , Takagi J , Noda T , Hori T , Takasaki K , Kawata G and Arai N . 2022 . Acoustic zone monitoring to quantify fine-scale movements of aquatic animals in a narrow water body . Environmental Biology of Fishes , 105 ( 12 ): 1919 - 1931 [ DOI: 10.1007/s10641-022-01225-9 http://dx.doi.org/10.1007/s10641-022-01225-9 ]
Moreira F S , Regos A , Gonçalves J F , Rodrigues T M , Verde A , Pagès M , Pérez J A , Meunier B , Lepetit J P , Honrado J P and Gonçalves D . 2022 . Combining citizen science data and satellite descriptors of ecosystem functioning to monitor the abundance of a migratory bird during the non-breeding season . Remote Sensing , 14 ( 3 ): 463 [ DOI: 10.3390/rs14030463 http://dx.doi.org/10.3390/rs14030463 ]
Mutlu K , Rabell J E , Del Olmo P M and Haesler S . 2018 . IR thermography-based monitoring of respiration phase without image segmentation . Journal of Neuroscience Methods , 301 : 1 - 8 [ DOI: 10.1016/j.jneumeth.2018.02.017 http://dx.doi.org/10.1016/j.jneumeth.2018.02.017 ]
Na X D , Zang S Y , Zhang Y H and Li W L . 2015 . Assessing breeding habitat suitability for the endangered red-crowned crane ( Grus japonensis ) based on multi-source remote sensing data . Wetlands , 35 ( 5 ): 955 - 967 [ DOI: 10.1007/s13157-015-0686-7 http://dx.doi.org/10.1007/s13157-015-0686-7 ]
Nakayama S , Doering-Arjes P , Linzmaier S , Briege J , Klefoth T , Pieterek T and Arlinghaus R . 2018 . Fine-scale movement ecology of a freshwater top predator, Eurasian perch ( Perca fluviatilis ), in response to the abiotic environment over the course of a year . Ecology of Freshwater Fish , 27 ( 3 ): 798 - 812 [ DOI: 10.1111/eff.12393 http://dx.doi.org/10.1111/eff.12393 ]
Newcombe P B , Nilsson C , Lin T Y , Winner K , Bernstein G , Maji S , Sheldon D , Farnsworth A and Horton K G . 2019 . Migratory flight on the Pacific Flyway: strategies and tendencies of wind drift compensation . Biology Letters , 15 ( 9 ): 20190383 [ DOI: 10.1098/rsbl.2019.0383 http://dx.doi.org/10.1098/rsbl.2019.0383 ]
Norouzzadeh M S , Nguyen A , Kosmala M , Swanson A , Palmer M S , Packer C and Clune J . 2018 . Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning . Proceedings of the National Academy of Sciences of the United States of America , 115 ( 25 ): E5716 - E5725 [ DOI: 10.1073/pnas.1719367115 http://dx.doi.org/10.1073/pnas.1719367115 ]
O’Connor J , Morrongiello J , Ayres R , Amtstaetter F , Koster W , Kitchingman A , Cowell T , Bowler M and Hale R . 2023 . Understanding movement and habitat-use to guide reintroductions and habitat rehabilitation for a nonmigratory freshwater fish . Restoration Ecology , 31 ( 5 ): e 13869 [ DOI: 10.1111/rec.13869 http://dx.doi.org/10.1111/rec.13869 ]
Oishi Y , Oguma H , Tamura A , Nakamura R and Matsunaga T . 2018 . Animal detection using thermal images and its required observation conditions . Remote Sensing , 10 ( 7 ): 1050 [ DOI: 10.3390/rs10071050 http://dx.doi.org/10.3390/rs10071050 ]
Okura F , Ikuma S , Makihara Y , Muramatsu D , Nakada K and Yagi Y . 2019 . RGB-D video-based individual identification of dairy cows using gait and texture analyses . Computers and Electronics in Agriculture , 165 : 104944 [ DOI: 10.1016/j.compag.2019.104944 http://dx.doi.org/10.1016/j.compag.2019.104944 ]
Olsoy P J , Shipley L A , Rachlow J L , Forbey J S , Glenn N F , Burgess M A and Thornton D H . 2018 . Unmanned aerial systems measure structural habitat features for wildlife across multiple scales . Methods in Ecology and Evolution , 9 ( 3 ): 594 - 604 [ DOI: 10.1111/2041-210X.12919 http://dx.doi.org/10.1111/2041-210X.12919 ]
Osman D , Fruhwirth G , Rhode K and Noh Y . 2018 . Development of a respiration monitor based on fibre optics and CCD camera for small animal preclinical imaging // 2018 IEEE SENSORS . New Delhi : IEEE: 1 - 4 [ DOI: 10.1109/ICSENS.2018.8589828 http://dx.doi.org/10.1109/ICSENS.2018.8589828 ]
Pallottino F , Steri R , Menesatti P , Antonucci F , Costa C , Figorilli S and Catillo G . 2015 . Comparison between manual and stereovision body traits measurements of Lipizzan horses . Computers and Electronics in Agriculture , 118 : 408 - 413 [ DOI: 10.1016/j.compag.2015.09.019 http://dx.doi.org/10.1016/j.compag.2015.09.019 ]
Papastamatiou Y P , Meyer C G , Carvalho F , Dale J J , Hutchinson M R and Holland K N . 2013 . Telemetry and random-walk models reveal complex patterns of partial migration in a large marine predator . Ecology , 94 ( 11 ): 2595 - 2606 [ DOI: 10.1890/12-2014.1 http://dx.doi.org/10.1890/12-2014.1 ]
Parente L , Ehrmann S , Hengl T , Fritz S , Bonannella C , Malek Ž , Fischer C , Perez K , Stanimirova R , Meyer C , Wisser D , Cinardi G and Sloat L . 2025 . Global distribution of cattle, goats, sheep and horses at 1-km resolution for 2000—2022 based on sub-national census data and spatiotemporal Machine Learning . SquareResearch,PREPRINT(Version 1 ) [DOI: 10.21203/rs.3.rs-6201916/v1]
Peng J B , Wang D L , Liao X H , Shao Q Q , Sun Z G , Yue H Y and Ye H P . 2020 . Wild animal survey using UAS imagery and deep learning: modified Faster R-CNN for kiang detection in Tibetan Plateau . ISPRS Journal of Photogrammetry and Remote Sensing , 169 : 364 - 376 [ DOI: 10.1016/j.isprsjprs.2020.08.026 http://dx.doi.org/10.1016/j.isprsjprs.2020.08.026 ]
Pillans R D , Rochester W , Babcock R C , Thomson D P , Haywood M D E and Vanderklift M A . 2021 . Long-term acoustic monitoring reveals site fidelity, reproductive migrations, and sex specific differences in habitat use and migratory timing in a large coastal shark ( Negaprion acutidens ) . Frontiers in Marine Science , 8 : 616633 [ DOI: 10.3389/fmars.2021.616633 http://dx.doi.org/10.3389/fmars.2021.616633 ]
Ponsioen L , Kapralova K H , Holm F and Hennig B D . 2023 . Remote sensing of salmonid spawning sites in freshwater ecosystems: the potential of low-cost UAV data . PLoS One , 18 ( 8 ): e 0290736 [ DOI: 10.1371/journal.pone.0290736 http://dx.doi.org/10.1371/journal.pone.0290736 ]
Prompalit S , Fruhwirth G , Rhode K and Noh Y . 2018 . Development of non-contact device based on optical fibre technology for detecting respiration of small animal in imaging instruments // 2018 IEEE SENSORS . New Delhi : IEEE: 1 - 4 [ DOI: 10.1109/ICSENS.2018.8589570 http://dx.doi.org/10.1109/ICSENS.2018.8589570 ]
Qi J D , Ma Z T and Zheng S Z . 2024 . Wildlife image screening for infrared cameras based on YOLOv7 . Journal of Beijing Forestry University , 46 ( 2 ): 143 - 154
齐建东 , 马鐘添 , 郑尚姿 . 2024 . 基于YOLOv7的红外相机野生动物图像筛选 . 北京林业大学学报 , 46 ( 2 ): 143 - 154 [ DOI: 10.12171/j.1000-1522.20230112 http://dx.doi.org/10.12171/j.1000-1522.20230112 ]
Qiao Y L , Su D B L G , Kong H , Sukkarieh S , Lomax S and Clark C . 2020 . BiLSTM-based Individual Cattle Identification for Automated Precision Livestock Farming // 2020 IEEE 16th International Conference on Automation Science and Engineering (CASE) . Hong Kong, China : IEEE: 967 - 972 [ DOI: 10.1109/case48305.2020.9217026 http://dx.doi.org/10.1109/case48305.2020.9217026 ]
Recio M R , Mathieu R , Hall G B , Moore A B and Seddon P J . 2013 . Landscape resource mapping for wildlife research using very high resolution satellite imagery . Methods in Ecology and Evolution , 4 ( 10 ): 982 - 992 [ DOI: 10.1111/2041-210X.12094 http://dx.doi.org/10.1111/2041-210X.12094 ]
Remelgado R , Leutner B , Safi K , Sonnenschein R , Kuebert C and Wegmann M . 2018 . Linking animal movement and remote sensing-mapping resource suitability from a remote sensing perspective . Remote Sensing in Ecology and Conservation , 4 ( 3 ): 211 - 224 [ DOI: 10.1002/rse2.70 http://dx.doi.org/10.1002/rse2.70 ]
Rezaei B , Huang X F , Yee J R and Ostadabbas S . 2017 . Long-term non-contact tracking of caged rodents // 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) . New Orleans : IEEE: 1952 - 1956 [ DOI: 10.1109/ICASSP.2017.7952497 http://dx.doi.org/10.1109/ICASSP.2017.7952497 ]
Rickbeil G J M , Coops N C , Berman E E , Mcclelland C J R , Bolton D K and Stenhouse G B . 2020 . Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore . Global Change Biology , 26 ( 11 ): 6266 - 6275 [ DOI: 10.1111/gcb.15295 http://dx.doi.org/10.1111/gcb.15295 ]
Robb B , Huang Q Y , Sexton J O , Stoner D and Leimgruber P . 2019 . Environmental differences between migratory and resident ungulates-predicting movement strategies in rocky mountain mule deer ( Odocoileus hemionus ) with remotely sensed plant phenology, snow, and land cover . Remote Sensing , 11 ( 17 ): 1980 [ DOI: 10.3390/rs11171980 http://dx.doi.org/10.3390/rs11171980 ]
Robinson C J , Gómez-Gutiérrez J , Markaida U and Gilly W F . 2016 . Prolonged decline of jumbo squid ( Dosidicus gigas ) landings in the Gulf of California is associated with chronically low wind stress and decreased chlorophyll a after El Niño 2009-2010 . Fisheries Research , 173 : 128 - 138 [ DOI: 10.1016/j.fishres.2015.08.014 http://dx.doi.org/10.1016/j.fishres.2015.08.014 ]
Rodríguez Alvarez J , Arroqui M , Mangudo P , Toloza J , Jatip D , Rodríguez J M , Teyseyre A , Sanz C , Zunino A , Machado C and Mateos C . 2018 . Body condition estimation on cows from depth images using Convolutional Neural Networks . Computers and Electronics in Agriculture , 155 : 12 - 22 [ DOI: 10.1016/j.compag.2018.09.039 http://dx.doi.org/10.1016/j.compag.2018.09.039 ]
Santos C D , Campos L F A S and Efe M A . 2019 . Foraging habitat choice of White-tailed Tropicbirds revealed by fine-scale GPS tracking and remote sensing . PeerJ , 7 : e 6261 [ DOI: 10.7717/peerj.6261 http://dx.doi.org/10.7717/peerj.6261 ]
Scales K L , Miller P I , Embling C B , Ingram S N , Pirotta E and Votier S C . 2014 . Mesoscale fronts as foraging habitats: composite front mapping reveals oceanographic drivers of habitat use for a pelagic seabird . Journal of the Royal Society Interface , 11 ( 100 ): 20140679 [ DOI: 10.1098/rsif.2014.0679 http://dx.doi.org/10.1098/rsif.2014.0679 ]
Schad L and Fischer J . 2023 . Opportunities and risks in the use of drones for studying animal behaviour . Methods in Ecology and Evolution , 14 ( 8 ): 1864 - 1872 [ DOI: 10.1111/2041-210X.13922 http://dx.doi.org/10.1111/2041-210X.13922 ]
Schneider S , Taylor G W , Linquist S and Kremer S C . 2019 . Past, present and future approaches using computer vision for animal re-identification from camera trap data . Methods in Ecology and Evolution , 10 ( 4 ): 461 - 470 [ DOI: 10.1111/2041-210X.13133 http://dx.doi.org/10.1111/2041-210X.13133 ]
Schütz A K , Louton H , Fischer M , Probst C , Gethmann J M , Conraths F J and Homeier-Bachmann T . 2024 . Automated detection and counting of wild boar in camera trap images . Animals , 14 ( 10 ): 1408 [ DOI: 10.3390/ani14101408 http://dx.doi.org/10.3390/ani14101408 ]
Scott M E , Heupel M R , Simpfendorfer C A , Matley J K and Pratchett M S . 2019 . Latitudinal and seasonal variation in space use by a large, predatory reef fish, Plectropomus leopardus . Functional Ecology , 33 ( 4 ): 670 - 680 [ DOI: 10.1111/1365-2435.13271 http://dx.doi.org/10.1111/1365-2435.13271 ]
Sha J C M , Kaneko A , Suda Hashimoto N , He T M , Take M , Peng Z and Hanya G . 2017 . Estimating activity of Japanese macaques ( Macaca fuscata ) using accelerometers . American Journal of Primatology , 79 ( 10 ): e 22694 [ DOI: 10.1002/ajp.22694 http://dx.doi.org/10.1002/ajp.22694 ]
Shamoun-Baranes J , Farnsworth A , Aelterman B , Alves J A , Azijn K , Bernstein G , Branco S , Desmet P , Dokter A M , Horton K , Kelling S , Kelly J F , Leijnse H , Rong J J , Sheldon D , Van den Broeck W , Van den Meersche J K , Van Doren B M and van Gasteren H . 2016 . Innovative visualizations shed light on avian nocturnal migration . PLoS One , 11 ( 8 ): e 0160106 [ DOI: 10.1371/journal.pone.0160106 http://dx.doi.org/10.1371/journal.pone.0160106 ]
Shao Q Q , Guo X J , Li Y Z , Wang Y C , Wang D L , Liu J Y , Fan J W and Yang F . 2018 . Using UAV remote sensing to analyze the population and distribution of large wild herbivores . Journal of Remote Sensing (in Chinese) , 22 ( 3 ): 497 - 507
邵全琴 , 郭兴健 , 李愈哲 , 汪阳春 , 王东亮 , 刘纪远 , 樊江文 , 杨帆 . 2018 . 无人机遥感的大型野生食草动物种群数量及分布规律研究 . 遥感学报 , 22 ( 3 ): 497 - 507 [ DOI: 10.11834/jrs.20187267 http://dx.doi.org/10.11834/jrs.20187267 ]
Shaw R L , Curtis T H , Metzger G , McCallister M P , Newton A , Fischer G C and Ajemian M J . 2021 . Three-dimensional movements and habitat selection of young white sharks ( Carcharodon carcharias ) across a temperate continental shelf ecosystem . Frontiers in Marine Science , 8 : 643831 [ DOI: 10.3389/fmars.2021.643831 http://dx.doi.org/10.3389/fmars.2021.643831 ]
Shi W , Dai B S , Shen W Z , Sun Y K , Zhao K X and Zhang Y G . 2023 . Automatic estimation of dairy cow body condition score based on attention-guided 3D point cloud feature extraction . Computers and Electronics in Agriculture , 206 : 107666 [ DOI: 10.1016/j.compag.2023.107666 http://dx.doi.org/10.1016/j.compag.2023.107666 ]
Song G F . 2019 . Research on Animal Facial Recognition Algorithm Based on Deep Learning . Hangzhou : Hangzhou Dianzi University
宋各方 . 2019 . 基于深度学习的动物面部识别算法研究 . 杭州 : 杭州电子科技大学
Su X H , Zhang J W , Ma Z B , Dong Y Q , Zi J L , Xu N , Zhang H Y , Xu F and Chen F X . 2024 . Identification of rare wildlife in the field environment based on the improved YOLOv5 model . Remote Sensing , 16 ( 9 ): 1535 [ DOI: 10.3390/rs16091535 http://dx.doi.org/10.3390/rs16091535 ]
Sun Y K , Huo P J , Wang Y J , Cui Z Q , Li Y , Dai B S , Li R Z and Zhang Y G . 2019 . Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score . Journal of Dairy Science , 102 ( 11 ): 10140 - 10151 [ DOI: 10.3168/jds.2018-16164 http://dx.doi.org/10.3168/jds.2018-16164 ]
Sutton L J , Ibañez J C , Salvador D I , Taraya R L , Opiso G S , Senarillos T L P and McClure C J W . 2023 . Space-time home-range estimates and resource selection for the Critically Endangered Philippine Eagle on Mindanao . IBIS , 166 ( 1 ): 156 - 170 [ DOI: 10.1111/ibi.13233 http://dx.doi.org/10.1111/ibi.13233 ]
Taylor R B , Mather M E , Smith J M and Boles K M . 2021 . Can identifying discrete behavioral groups with individual-based acoustic telemetry advance the understanding of fish distribution patterns? . Frontiers in Marine Science , 8 : 723025 [ DOI: 10.3389/fmars.2021.723025 http://dx.doi.org/10.3389/fmars.2021.723025 ]
Tazen M , Sasaoka N and Okamoto Y . 2023 . Non-contact heart rate measurement based on adaptive notch filter and elimination of respiration harmonics . IEEE Access , 11 : 46107 - 46119 [ DOI: 10.1109/ACCESS.2023.3272895 http://dx.doi.org/10.1109/ACCESS.2023.3272895 ]
Tremblay Y , Thiebault A , Mullers R and Pistorius P . 2014 . Bird-borne video-cameras show that seabird movement patterns relate to previously unrevealed proximate environment, not prey . PLoS One , 9 ( 2 ): e 88424 [ DOI: 10.1371/journal.pone.0088424 http://dx.doi.org/10.1371/journal.pone.0088424 ]
Tsujii K , Otsuki M , Akamatsu T , Matsuo I , Amakasu K , Kitamura M , Kikuchi T , Miyashita K and Mitani Y . 2016 . The migration of fin whales into the southern Chukchi Sea as monitored with passive acoustics . ICES Journal of Marine Science , 73 ( 8 ): 2085 - 2092 [ DOI: 10.1093/icesjms/fsv271 http://dx.doi.org/10.1093/icesjms/fsv271 ]
Vayghan A H and Lee M A . 2022 . Hotspot habitat modeling of skipjack tuna ( Katsuwonus pelamis ) in the Indian Ocean by using multisatellite remote sensing . Turkish Journal of Fisheries and Aquatic Sciences , 22 ( 9 ): TRJFAS 19107 [ DOI: 10.4194/TRJFAS19107 http://dx.doi.org/10.4194/TRJFAS19107 ]
Villegas-Ríos D , Réale D , Freitas C , Moland E and Olsen E M . 2017 . Individual level consistency and correlations of fish spatial behaviour assessed from aquatic animal telemetry . Animal Behaviour , 124 : 83 - 94 [ DOI: 10.1016/j.anbehav.2016.12.002 http://dx.doi.org/10.1016/j.anbehav.2016.12.002 ]
Wang D L , Shao Q Q and Yue H Y . 2019a . Surveying wild animals from satellites, manned aircraft and Unmanned Aerial Systems (UASs): a review . Remote Sensing , 11 ( 11 ): 1308 [ DOI: 10.3390/rs11111308 http://dx.doi.org/10.3390/rs11111308 ]
Wang F . 2022 . Research on Cattle Muzzle Recognition Method Based on Machine Vision . Baotou : Inner Mongolia University of Science and Technology
王锋 . 2022 . 基于机器视觉的牛唇纹识别方法研究 . 包头 : 内蒙古科技大学 [ DOI: 10.27724/d.cnki.gnmgk.2022.000672 http://dx.doi.org/10.27724/d.cnki.gnmgk.2022.000672 ]
Wang P F , Ma Y Y , Liang F L , Zhang Y , Yu X , Li Z , An Q , Lv H and Wang J Q . 2020 . Non-contact vital signs monitoring of dog and cat using a UWB radar . Animals , 10 ( 2 ): 205 [ DOI: 10.3390/ani10020205 http://dx.doi.org/10.3390/ani10020205 ]
Wang P F , Zhang Y , Ma Y Y , Liang F L , An Q , Xue H J , Yu X , Lv H and Wang J Q . 2019b . Method for distinguishing humans and animals in vital signs monitoring using IR-UWB radar . International Journal of Environmental Research and Public Health , 16 ( 22 ): 4462 [ DOI: 10.3390/ijerph16224462 http://dx.doi.org/10.3390/ijerph16224462 ]
Wang S W , Wang D L , Ling C X , Zhang J , Jin Y and Liu S G . 2023 . Population and spatial distribution of moose in Nanwenghe National Nature Reserve, Heilongjiang Province based on Unmanned Aerial Vehicle (UAV) remote sensing . Chinese Journal of Wildlife , 44 ( 3 ): 486 - 493
王劭文 , 王东亮 , 凌成星 , 张军 , 金跃 , 刘曙光 . 2023 . 基于无人机遥感的黑龙江南瓮河国家级自然保护区驼鹿种群数量及空间分布调查 . 野生动物学报 , 44 ( 3 ): 486 - 493 [ DOI: 10.12375/ysdwxb.20230302 http://dx.doi.org/10.12375/ysdwxb.20230302 ]
Wang X L , Xu J Q , Zhang S F , Li H and Li J . 2024 . A preliminary survey of mammals and birds diversity based on camera trapping in Qimantag Mountain of Altun Mountain National Nature Reserve, Xinjiang . Arid Land Geography , 47 ( 10 ): 1662 - 1673
王秀磊 , 徐俊泉 , 张圣发 , 李欢 , 李佳 . 2024 . 基于红外相机技术的阿尔金山保护区祁曼塔格山兽类和鸟类多样性监测的初步研究 . 干旱区地理 , 47 ( 10 ): 1662 - 1673 [ DOI: 10.12118/j.issn.1000-6060.2024.426 http://dx.doi.org/10.12118/j.issn.1000-6060.2024.426 ]
Wang Y F , Xu X S , Wang Z , Li R , Hua Z X and Song H B . 2023 . ShuffleNet-Triplet: a lightweight RE-identification network for dairy cows in natural scenes . Computers and Electronics in Agriculture , 205 : 107632 [ DOI: 10.1016/j.compag.2023.107632 http://dx.doi.org/10.1016/j.compag.2023.107632 ]
Wang Z Y , Shadpour S , Chan E , Rotondo V , Wood K M and Tulpan D . 2021 . ASAS-NANP SYMPOSIUM: applications of machine learning for livestock body weight prediction from digital images . Journal of Animal Science , 99 ( 2 ): skab 022 [ DOI: 10.1093/jas/skab022 http://dx.doi.org/10.1093/jas/skab022 ]
Weinz A A , Matley J K , Klinard N V , Fisk A T and Colborne S F . 2020 . Identification of predation events in wild fish using novel acoustic transmitters . Animal Biotelemetry , 8 ( 1 ): 28 [ DOI: 10.1186/s40317-020-00215-x http://dx.doi.org/10.1186/s40317-020-00215-x ]
Wongsriworaphon A , Arnonkijpanich B and Pathumnakul S . 2015 . An approach based on digital image analysis to estimate the live weights of pigs in farm environments . Computers and Electronics in Agriculture , 115 : 26 - 33 [ DOI: 10.1016/j.compag.2015.05.004 http://dx.doi.org/10.1016/j.compag.2015.05.004 ]
Wu Z J , Zhang C , Gu X W , Duporge I , Hughey L F , Stabach J A , Skidmore A K , Hopcraft J G C , Lee S J , Atkinson P M , McCauley D J , Lamprey R , Ngene S and Wang T J . 2023 . Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape . Nature Communications , 14 ( 1 ): 3072 [ DOI: 10.1038/s41467-023-38901-y http://dx.doi.org/10.1038/s41467-023-38901-y ]
Xiao R L , Gao J X , Liu A J , Hou P , Zhang W G , Yang Y , Li Y B , Fu Z , Jin C P , Yang X , Zheng S H and Yin S J . 2023 . Remote sensing monitoring method of livestock in grassland based on multi-scale features and multi-models fusion . National Remote Sensing Bulletin , 27 ( 10 ): 2383 - 2394
肖如林 , 高吉喜 , 刘爱军 , 侯鹏 , 张文国 , 杨勇 , 李运保 , 付卓 , 靳川平 , 杨栩 , 郑淑华 , 殷守敬 . 2023 . 多尺度特征和多模型相融合的草原区牧畜遥感监测 . 遥感学报 , 27 ( 10 ): 2383 - 2394 [ DOI: 10.11834/jrs.20222099 http://dx.doi.org/10.11834/jrs.20222099 ]
Xu D M , Wu J L , Zhu Z C , Wu Y Q , Zhou R F , Ye Z L and Wu Y G . 2023 . Effects of different degree of human disturbance on forest wildlife habitats based on camera trap data . Chinese Journal of Zoology , 58 ( 3 ): 357 - 365
许大明 , 吴家连 , 朱志成 , 吴逸卿 , 周荣飞 , 叶珍林 , 吴友贵 . 2023 . 基于红外相机技术分析不同人类干扰强度对森林动物栖息的影响 . 动物学杂志 , 58 ( 3 ): 357 - 365 [ DOI: 10.13859/j.cjz.202303005 http://dx.doi.org/10.13859/j.cjz.202303005 ]
Xu Z Y , Wang T J , Skidmore A K and Lamprey R . 2024 . A review of deep learning techniques for detecting animals in aerial and satellite images . International Journal of Applied Earth Observation and Geoinformation , 128 : 103732 [ DOI: 10.1016/j.jag.2024.103732 http://dx.doi.org/10.1016/j.jag.2024.103732 ]
Xue Y F , Wang T J and Skidmore A K . 2017 . Automatic counting of large mammals from very high resolution panchromatic satellite imagery . Remote Sensing , 9 ( 9 ): 878 [ DOI: 10.3390/rs9090878 http://dx.doi.org/10.3390/rs9090878 ]
Yi D H , Gong Z , Jech J M , Ratilal P and Makris N C . 2018 . Instantaneous 3D continental-shelf scale imaging of oceanic fish by multi-spectral resonance sensing reveals group behavior during spawning migration . Remote Sensing , 10 ( 1 ): 108 [ DOI: 10.3390/rs10010108 http://dx.doi.org/10.3390/rs10010108 ]
Yoshino K , Takahashi A , Adachi T , Costa D P , Robinson P W , Peterson S H , Hückstädt L A , Holser R R and Naito Y . 2020 . Acceleration-triggered animal-borne videos show a dominance of fish in the diet of female northern elephant seals . Journal of Experimental Biology , 223 : jeb 212936 [ DOI: 10.1242/jeb.212936 http://dx.doi.org/10.1242/jeb.212936 ]
Youngentob K N , Yoon H J , Stein J , Lindenmayer D B and Held A A . 2015 . Where the wild things are: using remotely sensed forest productivity to assess arboreal marsupial species richness and abundance . Diversity and Distributions , 21 ( 8 ): 977 - 990 [ DOI: 10.1111/ddi.12332 http://dx.doi.org/10.1111/ddi.12332 ]
Youssef A , Viazzi S , Exadaktylos V and Berckmans D . 2014 . Non-contact, motion-tolerant measurements of chicken ( Gallus gallus ) embryo heart rate (HR) using video imaging and signal processing . Biosystems Engineering , 125 : 9 - 16 [ DOI: 10.1016/j.biosystemseng.2014.06.014 http://dx.doi.org/10.1016/j.biosystemseng.2014.06.014 ]
Yu P B , Li Y D , Xu B , Wei J , Li S , Dong J H , Qu J H , Xu J , Huang Z Y X , Ma C F , Yang J , Zhang G G , Chen B , Huang S Q , Shi C M , Gao H W , Liu F , Tian H Y , Stenseth N C , Xu B and Wang J J . 2017 . Using satellite data for the characterization of local animal reservoir populations of Hantaan virus on the Weihe Plain, China . Remote Sensing , 9 ( 10 ): 1076 [ DOI: 10.3390/rs9101076 http://dx.doi.org/10.3390/rs9101076 ]
Yu W , Chen X J , Yi Q and Chen Y . 2016 . Influence of oceanic climate variability on stock level of western winter-spring cohort of Ommastrephes bartramii in the Northwest Pacific Ocean . International Journal of Remote Sensing , 37 ( 17 ): 3974 - 3994 [ DOI: 10.1080/01431161.2016.1204477 http://dx.doi.org/10.1080/01431161.2016.1204477 ]
Zainuddin M , Safruddin S , Farhum A , Budimawan B , Hidayat R , Selamat M B , Wiyono E S , Ridwan M , Syamsuddin M and Ihsan Y N . 2023 . Satellite-based ocean color and thermal signatures defining habitat hotspots and the movement pattern for commercial skipjack tuna in Indonesia fisheries management area 713, western tropical Pacific . Remote Sensing , 15 ( 5 ): 1268 [ DOI: 10.3390/rs15051268 http://dx.doi.org/10.3390/rs15051268 ]
Zhang H M , Li J H , Zhou Y C , Wang X Z and Yan B P . 2013 . Using a time series of satellite imagery to study the wild birds’ migration // 2013 Fourth International Conference on Networking and Distributed Computing . Los Angeles : IEEE: 46 - 50 [ DOI: 10.1109/ICNDC.2013.34 http://dx.doi.org/10.1109/ICNDC.2013.34 ]
Zhang J L , Lei J , Wu J H , Lu H X , Guo H , Pezzuolo A , Kolpakov V and Ruchay A . 2023a . Automatic method for quantitatively analyzing the body condition of livestock from 3D shape . Computers and Electronics in Agriculture , 214 : 108307 [ DOI: 10.1016/j.compag.2023.108307 http://dx.doi.org/10.1016/j.compag.2023.108307 ]
Zhang Y L and Cai Z C . 2023b . CE-RetinaNet: a channel enhancement method for infrared wildlife detection in UAV images . IEEE Transactions on Geoscience and Remote Sensing , 61 : 4104012 [ DOI: 10.1109/TGRS.2023.3299651 http://dx.doi.org/10.1109/TGRS.2023.3299651 ]
Zhao J M , Zhao Z X and Li Q . 2015 . A Kinect-Based Morphometric Measurement Method for Sheep . Jiangsu Agricultural Sciences , 43 ( 11 ): 495 - 499
赵建敏 , 赵忠鑫 , 李琦 . 2015 . 基于Kinect传感器的羊体体尺测量方法 . 江苏农业科学 , 43 ( 11 ): 495 - 499 [ DOI: 10.15889/j.issn.1002-1302.2015.11.153 http://dx.doi.org/10.15889/j.issn.1002-1302.2015.11.153 ]
Zhao K X . 2017 . Dairy Cattle’s Information Perception and Behavior Analysis based on Machine Vision . Yangling : Northwest A and F University
赵凯旋 . 2017 . 基于机器视觉的奶牛个体信息感知及行为分析 . 杨凌 : 西北农林科技大学
Zhao K X , Zhang M , Shen W Z , Liu X H , Ji J T , Dai B S and Zhang R H . 2023 . Automatic body condition scoring for dairy cows based on efficient net and convex hull features of point clouds . Computers and Electronics in Agriculture , 205 : 107588 [ DOI: 10.1016/j.compag.2022.107588 http://dx.doi.org/10.1016/j.compag.2022.107588 ]
Zhao P , Liu S M , Zhou Y , Lynch T , Lu W H , Zhang T and Yang H S . 2021 . Estimating animal population size with very high-resolution satellite imagery . Conservation Biology , 35 ( 1 ): 316 - 324 [ DOI: 10.1111/cobi.13613 http://dx.doi.org/10.1111/cobi.13613 ]
Zhao Y L , Zeng F G , Jia N , Zhu J , Wang H F and Li B . 2023 . Rapid measurements of pig body size based on DeepLabCut algorithm . Transactions of the Chinese Society for Agricultural Machinery , 54 ( 2 ): 249 - 255 , 292
赵宇亮 , 曾繁国 , 贾楠 , 朱君 , 王海峰 , 李斌 . 2023 . 基于DeepLabCut算法的猪只体尺快速测量方法研究 . 农业机械学报 , 54 ( 2 ): 249- 255 , 292 [ DOI: 10.6041/j.issn.1000-1298.2023.02.025 http://dx.doi.org/10.6041/j.issn.1000-1298.2023.02.025 ]
Zheng X , Owen M A , Nie Y , Hu Y , Swaisgood R R , Yan L and Wei F . 2016 . Individual identification of wild giant pandas from camera trap photos - a systematic and hierarchical approach . Journal of Zoology , 300 ( 4 ): 247 - 256 [ DOI: 10.1111/jzo.12377 http://dx.doi.org/10.1111/jzo.12377 ]
Zong S , Brantschen J , Zhang X W , Albouy C , Valentini A , Zhang H , Altermatt F and Pellissier L . 2023 . Combining environmental DNA with remote sensing variables to map fish species distributions along a large river . Remote Sensing in Ecology and Conservation , 10 ( 2 ): 220 - 235 [ DOI: 10.1002/rse2.366 http://dx.doi.org/10.1002/rse2.366 ]
相关文章
相关作者
相关机构
京公网安备11010802024621
