Advances in upscaling methods of quantitative remote sensing
- Vol. 22, Issue 3, Pages: 408-423(2018)
Published: 2018-5 ,
Accepted: 23 September 2017
DOI: 10.11834/jrs.20187070
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 2018-5 ,
Accepted: 23 September 2017
扫 描 看 全 文
郝大磊, 肖青, 闻建光, 游冬琴, 吴小丹, 林兴稳, 吴胜标. 2018. 定量遥感升尺度转换方法研究进展. 遥感学报, 22(3): 408–423
Hao D L, Xiao Q, Wen J G, You D Q, Wu X D, Lin X W and Wu S B. 2018. Advances in upscaling methods of quantitative remote sensing. Journal of Remote Sensing, 22(3): 408–423
尺度效应是地理科学中普遍存在的现象,制约着遥感等空间科学的发展。发展合理的尺度转换方法以促进遥感技术的全面应用迫在眉睫。本文分别从面—面升尺度转换、点—面升尺度转换两个角度对目前定量遥感领域存在的升尺度转换方法进行综述。其中,面—面升尺度转换方法按照转换原理可分为先反演后聚合、先聚合后反演两种;点—面升尺度转换方法依据定权策略可分为简单平均法、经验回归法、地统计方法、贝叶斯方法等。不同的升尺度转换方法具有各自的特点和优势,本文分别从模型构架、基本原理、特点、局限性和适用条件等方面对现有升尺度转换方法进行分析和讨论,并从离散型与连续型、统计型与物理型、普适型与针对型以及先验知识有和无4个方面总结了现有研究中存在的不足,剖析了升尺度转换研究中存在的问题与挑战,并预测了可能的发展方向。
The scale effect is a common phenomenon in geography that restricts the development of space science
such as remote sensing. Scale issues have elicited increasing attention from scientists due to the development of quantitative remote sensing. Developing a reasonable scaling method to promote the extensive application of remote sensing technology is urgent. In this study
existing upscaling methods in quantitative remote sensing are reviewed from two aspects
namely
pixel-to-pixel and point-to-pixel upscaling. The methods are analyzed and compared in terms of the construction
basic principles
characteristics
limitations
and applicable conditions of the corresponding models. Pixel-to-pixel upscaling methods can be divided into two types
namely
inversion–aggregation and aggregation–inversion
according to the conversion mechanism. Inversion–aggregation methods are classified as mathematics and physics based. Mathematics-based methods consist of classic image process approaches
empirical regression methods
and fractal-based methods. The principle of inversion–aggregation methods is explicit and clear
and the values acquired by such methods are generally considered true values. However
these methods require a pixel-by-pixel inversion process
which leads to low operational efficiency. Aggregation–inversion methods are categorized as input parameter-
model-
and output parameter-based approaches. Pixel-by-pixel retrieval is avoided in such methods. From the perspective of the power determination strategy
point-to-pixel upscaling methods can be classified as simple average
empirical regression
geostatistical
and Bayesian. Simple average methods depend on a reasonable evaluation of spatial heterogeneity and an efficient sampling strategy. Empirical regression methods build the empirical statistical relationship on the basis of a large amount of sample data. Geostatistical methods consider the spatial autocorrelation and spatial distribution characteristics of variables. Bayesian methods integrate high-spatial-resolution remote sensing data and prior knowledge to acquire an optimal estimation of land surface parameters at a low spatial resolution. Different point-to-pixel upscaling methods present different advantages and characteristics. Combining the temporal–spatial distribution characteristics of parameters
prior knowledge
and applicability of upscaling methods is necessary to select reasonable upscaling methods in practical applications. On the basis of this analysis
we summarize the problems in existing scaling research from four aspects
namely
discrete and continuous model
statistical and physical model
universal and targeted model
and use of prior knowledge or not. Several other problems
such as the definition of true value
uncertainty analysis
and scale domain and scale threshold determination
have rarely been discussed in upscaling research and require the attention of scientists. We also provide several possible development directions of upscaling methods in quantitative remote sensing. These directions provide important guidance to scaling theory research and its practical application.
升尺度转换尺度效应尺度纠正真实性检验定量遥感
upscalingscale effectscale correctionvalidationquantitative remote sensing
Aman A, Randriamanantena H P, Podaire A and Frouin R. 1992. Upscale integration of normalized difference vegetation index: the problem of spatial heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 30(2): 326–338
An N, Ma Y and Bao Y H. 2015. Image and spectral fidelity study of hyperspectral remote sensing image scaling up based on wavelet transform//Proceedings of SPIE 9669, Remote Sensing of the Environment: 19th National Symposium on Remote Sensing of China. Xi’an, China: SPIE: 96690A [DOI: 10.1117/12.2204853]
Asli M and Marcotte D. 1995. Comparison of approaches to spatial estimation in a bivariate context. Mathematical Geology, 27(5): 641–658
Atkinson P M and Tate N J. 2000. Spatial scale problems and geostatistical solutions: a review. The Professional Geographer, 52(4): 607–623
Becker F and Li Z L. 1995. Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote Sensing Reviews, 12(3/4): 225–253
Berterretche M, Hudak A T, Cohen W B, Maiersperger T K, Gower S T and Dungan J. 2005. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sensing of Environment, 96(1): 49–61
Chen J M. 1999. Spatial scaling of a remotely sensed surface parameter by contexture. Remote Sensing of Environment, 69(1): 30–42
Chen J M, Chen X and Ju W. 2013. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity. Biogeosciences Discussions, 10(3): 4225–4270
Christakos G. 1990. A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology, 22(7): 763–777
Christakos G and Li X Y. 1998. Bayesian maximum entropy analysis and mapping: a farewell to kriging estimators?. Mathematical Geology, 30(4): 435–462
Christakos G, Kolovos A, Serre M L and Vukovich F. 2004. Total ozone mapping by integrating databases from remote sensing instruments and empirical models. IEEE Transactions on Geoscience and Remote Sensing, 42(5): 991–1008
Christakos G, Serre M L and Kovitz J L. 2001. BME representation of particulate matter distributions in the state of California on the basis of uncertain measurements. Journal of Geophysical Research: Atmospheres, 106(D9): 9717–9731
Cohen W B, Maiersperger T K, Gower S T and Turne D P. 2003. An improved strategy for regression of biophysical variables and Landsat ETM+ data. Remote Sensing of Environment, 84(4): 561–571
Cosh M H, Jackson T J, Starks P and Heathman G. 2006. Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. Journal of Hydrology, 323(1/4): 168–177
Crow W T, Berg A A, Cosh M H, Loew A, Mohanty B P, Panciera R, de Rosnay P, Ryu D and Walker J P. 2012. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Reviews of Geophysics, 50(2): RG2002
Crow W T, Ryu D and Famiglietti J S. 2005. Upscaling of field-scale soil moisture measurements using distributed land surface modeling. Advances in Water Resources, 28(1): 1–14
de Lannoy G J M, Houser P R, Verhoest N E C, Pauwels V R N and Gish T J. 2007. Upscaling of point soil moisture measurements to field averages at the OPE3 test site. Journal of Hydrology, 343(1/2): 1–11
Ding Y L, Ge Y, Hu M G, Wang J F, Wang J H, Zheng X M and Zhao K. 2014. Comparison of spatial sampling strategies for ground sampling and validation of MODIS LAI products. International Journal of Remote Sensing, 35(20): 7230–7244
D’Or D. 2003. Spatial Prediction of Soil Properties, the Bayesian Maximum Entropy Approach. Louvain-la-Neuve: Université Catholique de Louvain
El Maayar M and Chen J M. 2006. Spatial scaling of evapotranspiration as affected by heterogeneities in vegetation, topography, and soil texture. Remote Sensing of Environment, 102(1/2): 33–51
Erickson T A, Williams M W and Winstral A. 2005. Persistence of topographic controls on the spatial distribution of snow in rugged mountain terrain, Colorado, United States. Water Resources Research, 41(4): W04014
Ezzahar J, Hoedjes J C B and Chehbouni A. 2007. On the application of scintillometry over heterogeneous grids. Journal of Hydrology, 334(3/4): 493–501
Fan L, Xiao Q, Wen J G, Liu Q, Jin R, You D Q and Li X W. 2015. Mapping high-resolution soil moisture over heterogeneous cropland using multi-resource remote sensing and ground observations. Remote Sensing, 7(10): 13273–13297
Gao S G, Zhu Z L, Liu S M, Jin R, Yang G J and Tan L. 2014. Estimating the spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32: 54–66
Gao X and Huete A R. 2000. Validation of MODIS land surface reflectance and vegetation indices with multi-scale high spatial resolution data//Proceedings of 2000 IEEE International Geoscience and Remote Sensing Symposium. Honolulu, HI: IEEE: 533–535 [DOI: 10.1109/igarss.2000.861620]
Garrigues S, Allard D, Baret F and Weiss M. 2006. Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data. Remote Sensing of Environment, 105(4): 286–298
Ge Y, Liang Y Z, Wang J H, Zhao Q Y and Liu S M. 2015. Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3): 656–660
Greifeneder F, Notarnicola C, Bertoldi G, Niedrist G and Wagner W. 2016. From point to pixel scale: an upscaling approach for in situ soil moisture measurements. Vadose Zone Journal, 15(6) [DOI: 10.2136/vzj2015.03.0048] (in press)
郭建明. 2008. 分形理论在遥感影像空间尺度转换中的应用研究. 西安: 西北大学
Guo J M. 2008. An Analysis on Scale Transformation in Remote Sensing-Based on Fractal Theory. Xi’an: Northwest University
Hay G J, Niernann K O and Goodenough D J. 1997. Spatial thresholds, image-objects, and upscaling: a multiscale evaluation. Remote Sensing of Environment, 62(1): 1–19
He Y Q, Bo Y C, Chai L L, Liu X L and Li A H. 2016. Linking in situ LAI and fine resolution remote sensing data to map reference LAI over cropland and grassland using geostatistical regression method. International Journal of Applied Earth Observation and Geoinformation, 50: 26–38
Hengl T, Heuvelink G B M and Rossiter D G. 2007. About regression-kriging: from equations to case studies. Computers and Geosciences, 33(10): 1301–1315
Hu M G, Wang J H, Ge Y, Liu M X, Liu S M, Xu Z W and Xu T R. 2015. Scaling flux tower observations of sensible heat flux using weighted area-to-area regression kriging. Atmosphere, 6(8): 1032–1044
Hu Z L and Islam S. 1997a. Effects of spatial variability on the scaling of land surface parameterizations. Boundary-Layer Meteorology, 83(3): 441–461
Hu Z L and Islam S. 1997b. A framework for analyzing and designing scale invariant remote sensing algorithms. IEEE Transactions on Geoscience and Remote Sensing, 35(3): 747–755
Hufkens K, Bogaert J, Dong Q H, Lu L, Huang C L, Ma M G, Che T, Li X, Veroustraete F and Ceulemans R. 2008. Impacts and uncertainties of upscaling of remote-sensing data validation for a semi-arid woodland. Journal of Arid Environments, 72(8): 1490–1505
Jiang J L, Liu X N, Liu C H, Wu L, Xia X P, Liu M L and Du Z H. 2015. Analyzing the spatial scaling bias of rice leaf area index from hyperspectral data using wavelet-fractal technique. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6): 3068–3080
Kang J, Jin R and Li X. 2015. Regression kriging-based upscaling of soil moisture measurements from a wireless sensor network and multiresource remote sensing information over heterogeneous cropland. IEEE Geoscience and Remote Sensing Letters, 12(1): 92–96
Kang J, Jin R, Li X and Zhang Y. 2017. Block kriging with measurement errors: a case study of the spatial prediction of soil moisture in the Middle Reaches of Heihe River Basin. IEEE Geoscience and Remote Sensing Letters, 14(1): 87–91
Li A H, Bo Y C and Chen L. 2011. Bayesian Maximum Entropy data fusion of field observed LAI and Landsat ETM+ derived LAI//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver, BC: IEEE: 2617–2620 [DOI: 10.1109/igarss.2011.6049739]
Li A H, Bo Y C, Zhu Y X, Guo P, Bi J and He Y Q. 2013. Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method. Remote Sensing of Environment, 135: 52–63
李新. 2013. 陆地表层系统模拟和观测的不确定性及其控制. 中国科学: 地球科学, 43(11): 1735–1742
Li X. 2013. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems. Science China Earth Sciences, 43(11): 1735–1742 (
李新, 晋锐, 刘绍民, 葛咏, 肖青, 柳钦火, 马明国, 冉有华. 2016. 黑河遥感试验中尺度上推研究的进展与前瞻. 遥感学报, 20(5): 921–932
Li X, Jin R, Liu S M, Ge Y, Xiao Q, Liu Q H, Ma M G and Ran Y H. 2016. Upscaling research in HIWATER: progress and prospects. Journal of Remote Sensing, 20(5): 921–932 (
Li X W, Strahler A H and Friedl M A. 1999. A conceptual model for effective directional emissivity from nonisothermal surfaces. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 2508–2517
李小文, 王锦地, Strahler A H. 1999. 非同温黑体表面上Planck定律的尺度效应. 中国科学(E辑), 29(5): 422–426
Li X W, Wang J D and Strahler A H. 1999. Scale effect of Planck’s law over nonisothermal blackbody surface. Science in China Series E: Technological Sciences, 29(5): 422–426 (
Li X W, Wang J D and Strahler A H. 2000. Scale effects and scaling-up by geometric-optical model. Science in China Series E: Technological Sciences, 43(S1): 17–22
李小文, 王祎婷. 2013. 定量遥感尺度效应刍议. 地理学报, 68(9): 1163–1169
Li X W and Wang Y T. 2013. Prospects on future developments of quantitative remote sensing. Acta Geographica Sinica, 68(9): 1163–1169 (
李小文, 赵红蕊, 张颢, 王锦地. 2002. 全球变化与地表参数的定量遥感. 地学前缘, 9(2): 365–370
Li X W, Zhao H R, Zhang H and Wang J D. 2002. Global change study and quantitative remote sensing for land surface parameters. Earth Science Frontiers, 9(2): 365–370 (
Liang S L. 2000. Numerical experiments on the spatial scaling of land surface albedo and leaf area index. Remote Sensing Reviews, 19(1/4): 225–242
Liang S L. 2004. Quantitative Remote Sensing of Land Surfaces. Hoboken, NJ, USA: Wiley-Interscience
刘爱利, 王培法, 丁园圆. 2012. 地统计学概论. 北京: 科学出版社
Liu A L, Wang P F and Ding Y Y. 2012. Introduction to Geostatistics. Beijing: Science Press
刘良云. 2014a. 植被定量遥感原理与应用. 北京: 科学出版社
Liu L Y. 2014a. Vegetation Quantitative Remote Sensing Principles and Applications. Beijing: Science Press
刘良云. 2014b. 叶面积指数遥感尺度效应与尺度纠正. 遥感学报, 18(6): 1158–1168
Liu L Y. 2014b. Simulation and correction of spatialscaling effects for leaf area index. Journal of Remote Sensing, 18(6): 1158–1168 (
Liu S M, Xu Z W, Song L S, Zhao Q Y, Ge Y, Xu T R, Ma Y F, Zhu Z L, Jia Z Z and Zhang F. 2016. Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231: 97–113
刘艳, 王锦地, 周红敏, 薛华柱. 2014. 用地面点测量数据验证LAI产品中的尺度转换方法. 遥感学报, 18(6): 1189–1198
Liu Y, Wang J D, Zhou H M and Xue H Z. 2014. Upscaling approach for validation of LAI products derived from remote sensing observation. Journal of Remote Sensing, 18(6): 1189–1198 (
Liu Y B, Hiyama T and Yamaguchi Y. 2006. Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sensing of Environment, 105(2): 115–128
Lu D S, Batistella M, Moran E, Hetrick S, Alves D and Brondizio E. 2011. Fractional forest cover mapping in the Brazilian Amazon with a combination of MODIS and TM images. International Journal of Remote Sensing, 32(22): 7131–7149
卢俐, 刘绍民, 徐自为, 白洁, 王介民. 2010. 大孔径闪烁仪和涡动相关仪观测显热通量之间的尺度关系. 地球科学进展, 25(11): 1273–1282
Lu L, Liu S M, Xu Z W, Bai J and Wang J M. 2010. The scale relationship of sensible heat flux measured by large aperture scintillometer and eddy covariance system. Advances in Earth Science, 25(11): 1273–1282 (
栾海军, 田庆久, 顾行发, 余涛, 胡新礼. 2013a. 基于分形理论与GEOEYE-1影像的NDVI连续空间尺度转换模型构建及应用. 红外与毫米波学报, 32(6): 538–544, 549
Luan H J, Tian Q J, Gu X F, Yu T and Hu X L. 2013a. Establishing continuous scaling of NDVI based on fractal theory and GEOEYE-1 image. Journal of Infrared and Millimeter Waves, 32(6): 538–544, 549 (
栾海军, 田庆久, 余涛, 顾行发, 黄彦, 胡新礼, 杨闫君. 2015. 根据分形理论与五指标评价体系构建NDVI连续空间尺度转换模型. 遥感学报, 19(1): 116–125
Luan H J, Tian Q J, Yu T, Gu X F, Huang Y, Hu X L and Yang Y J. 2015. Establishing continuous spatial scaling model of NDVI on fractal theory and five-index estimation system. Journal of Remote Sensing, 19(1): 116–125 (
栾海军, 田庆久, 余涛, 胡新礼, 黄彦, 杜灵通, 赵利民, 魏曦, 韩杰, 张周威, 李少鹏. 2013b. 基于分形理论的NDVI连续空间尺度转换模型研究. 光谱学与光谱分析, 33(7): 1857–1862
Luan H J, Tian Q J, Yu T, Hu X L, Huang Y, Du L T, Zhao L M, Wei X, Han J, Zhang Z W and Li S P. 2013b. Modeling continuous scaling of NDVI based on fractal theory. Spectroscopy and Spectral Analysis, 33(7): 1857–1862 (
栾海军, 田庆久, 余涛, 胡新礼, 黄彦, 刘李, 杜灵通, 魏曦. 2013c. 定量遥感升尺度转换研究综述. 地球科学进展, 28(6): 657–664
Luan H J, Tian Q J, Yu T, Hu X L, Huang Y, Liu L, Du L T and Wei X. 2013c. Review of up-scaling of quantitative remote sensing. Advances in Earth Science, 28(6): 657–664 (
马灵玲. 2008. 遥感可反演地表参数的空间尺度效应分析及转换方法研究. 北京: 中国科学院遥感应用研究所
Ma L L. 2008. Study on Spatial Scaling Bias Analyses and Transformation Method of Land Parameters Retrived from Remote Sensing Data. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences
Ma L L, Li C R, Tang B H, Tang L L, Bi Y Y, Zhou B Y and Li Z L. 2008. Impact of spatial LAI heterogeneity on estimate of directional gap fraction from SPOT-satellite data. Sensors, 8(6): 3767–3779
Marceau D J and Hay G J. 1999. Remote sensing contributions to the scale issue. Canadian Journal of Remote Sensing, 25(4): 357–366
Mayaux P and Lambin E F. 1995. Estimation of tropical forest area from coarse spatial resolution data: a two-step correction function for proportional errors due to spatial aggregation. Remote Sensing of Environment, 53(1): 1–15
Pelgrum H. 2000. Spatial Aggregation of Land Surface Characteristics: Impact of Resolution of Remote Sensing Data on Land Surface Modelling. Netherlands: Wageningen Universiteit
彭谷亮, 刘绍民, 蔡旭晖, 卢俐, 徐自为. 2008. 非均匀下垫面湍流通量观测的印痕分析. 大气科学, 32(5): 1064–1070
Peng G L, Liu S M, Cai X H, Lu L and Xu Z W. 2008. Footprint analysis of turbulent flux measurement over heterogeneous surface. Chinese Journal of Atmospheric Sciences, 32(5): 1064–1070 (
Qin J, Yang K, Lu N, Chen Y Y, Zhao L and Han M L. 2013. Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sensing of Environment, 138: 1–9
Raffy M. 1992. Change of scale in models of remote sensing: a general method for spatialization of models. Remote Sensing of Environment, 40(2): 101–112
冉有华, 李新. 2009. 基于块克里金的土壤水分点观测向像元尺度的尺度上推研究. 冰川冻土, 31(2): 275–283
Ran Y H and Li X. 2009. Up scaling of point soil moisture measurements to pixel averages based on block kriging. Journal of Glaciology and Geocryology, 31(2): 275–283 (
Riihelä A, Laine V, Manninen T, Palo T and Vihma T. 2010. Validation of the Climate-SAF surface broadband albedo product: comparisons with in situ observations over Greenland and the ice-covered Arctic Ocean. Remote Sensing of Environment, 114(11): 2779–2790
Shi Y C, Qu Y H, Wang J D and Zhou H M. 2014. Upscaling in-situ leaf area index measurements to obtain the representative ground-truth of the heterogeneous land surface//Proceedings of the 3rd International Conference on Agro-Geoinformatics. Beijing, China: IEEE: 1–5 [DOI: 10.1109/Agro-Geoinformatics.2014.6910621]
Shi Y C, Wang J D, Qin J and Qu Y H. 2015. An upscaling algorithm to obtain the representative ground truth of LAI time series in heterogeneous land surface. Remote Sensing, 7(10): 12887–12908
Simic A, Chen J M, Liu J and Csillag F. 2004. Spatial scaling of net primary productivity using subpixel information. Remote Sensing of Environment, 93(1/2): 246–258
Smith R J. 2009. Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Anthropology, 140(3): 476–486
苏理宏, 李小文, 黄裕霞. 2001. 遥感尺度问题研究进展. 地球科学进展, 16(4): 544–548
Su L H, Li X W and Huang Y X. 2001. An review on scale in remote sensing. Advance in Earth Sciences, 16(4): 544–548 (
田庆久, 金震宇. 2006. 森林叶面积指数遥感反演与空间尺度转换研究. 遥感信息, 21(4): 5–11
Tian Q J and Jin Z Y. 2006. Research on calculation and spatial scaling of forest leaf area index from remote sensing image. Remote Sensing Information, 21(4): 5–11 (
Tian Y H, Wang Y J, Zhang Y, Knyazikhin Y, Bogaert J and Myneni R B. 2003. Radiative transfer based scaling of LAI retrievals from reflectance data of different resolutions. Remote Sensing of Environment, 84(1): 143–159
Timmermans W J, Su Z and Olioso A. 2009. Footprint issues in scintillometry over heterogeneous landscapes. Hydrology and Earth System Sciences, 13(11): 2179–2190
Wang J H, Ge Y, Heuvelink G B M and Zhou C H. 2015. Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics. Remote Sensing, 7(9): 11372–11388
Wang J H, Ge Y, Song Y Z and Li X. 2014. A geostatistical approach to upscale soil moisture with unequal precision observations. IEEE Geoscience and Remote Sensing Letters, 11(12): 2125–2129
Wang K C, Liu J M, Zhou X J, Sparrow M, Ma M, Sun Z A and Jiang W H. 2004. Validation of the MODIS global land surface albedo product using ground measurements in a semidesert region on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 109(D5): D05107
王莉雯, 卫亚星, 牛铮. 2010. 净初级生产力遥感估算模型空间尺度转换. 遥感学报, 14(6): 1074–1089
Wang L W, Wei Y X and Niu Z. 2010. Spatial scaling of net primary productivity model based on remote sensing. Journal of Remote Sensing, 14(6): 1074–1089 (
王培娟, 谢东辉, 张佳华, 朱启疆, 陈镜明. 2007. 基于过程模型的长白山自然保护区森林植被净第一性生产力空间尺度转换方法. 生态学报, 27(8): 3215–3223
Wang P J, Xie D H, Zhang J H, Zhu Q J and Chen J M. 2007. Spatial scaling of net primary productivity based on process model in Changbai Mountain Natural Reserve. Acta Ecologica Sinica, 27(8): 3215–3223 (
王祎婷, 谢东辉, 李小文. 2014. 构造地理要素趋势面的尺度转换普适性方法探讨. 遥感学报, 18(6): 1139–1146
Wang Y T, Xie D H and Li X W. 2014. Universal scaling methodology in remote sensing science by constructing geographic trend surface. Journal of Remote Sensing, 18(6): 1139–1146 (
闻建光. 2008. 复杂地形条件下地表BRDF/反照率遥感反演与尺度效应研究. 北京: 中国科学院遥感应用研究所
Wen J G. 2008. Study on Retrival of Land Surface BRDF/Albedo and Its Scale Effects in Complex Terrain. Institute of Remote Sensing Applications. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences
Wen J G, Liu Q, Liu Q H, Xiao Q and Li X W. 2009. Scale effect and scale correction of land-surface albedo in rugged terrain. International Journal of Remote Sensing, 30(20): 5397–5420
Wu C F, Wu J P, Luo Y M, Zhang L M and DeGloria S D. 2009. Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73(4): 1202–1208
吴骅. 2010. 地表关键特征参数的尺度效应与尺度转换方法研究: 以叶面积指数和地表温度为例. 北京: 中国科学院研究生院
Wu H. 2010. Study on Scale Effects and Scaling Method for Land Surface Key Parameters: Case Studies for Leaf Area Index and Surface Temperature. Beijing: Graduate University of Chinese Academy of Sciences
吴骅, 姜小光, 习晓环, 李传荣, 李召良. 2009. 两种普适性尺度转换方法比较与分析研究. 遥感学报, 13(2): 183–189
Wu H, Jiang X G, Xi X H, Li C R and Li Z L. 2009. Comparison and analysis of two general scaling methods for remotely sensed information. Journal of Remote Sensing, 13(2): 183–189 (
Wu H and Li Z L. 2009. Scale issues in remote sensing: a review on analysis, processing and modeling. Sensors, 9(3): 1768–1793
吴骅, 唐伯惠, 姜小光, 毕于运, 李召良. 2008. 基于等效参数的遥感信息尺度转换方法研究//2008海峡两岸遥感大会论文集. 桂林: 中国科学院遥感应用研究所
Wu H, Tang B H, Jiang X G, Bi Y Y and Li Z L. 2008. A novel scaling method based on equivalent parameters for remote sensing data//2008 Remote Sensing Symposium Across Taiwan Strait. Guilin: Institute of Remote Sensing Applications, Chinese Academy of Sciences
Wu H, Tang B H and Li Z L. 2013. Impact of nonlinearity and discontinuity on the spatial scaling effects of the leaf area index retrieved from remotely sensed data. International Journal of Remote Sensing, 34(9/10): 3503–3519
Wu L, Liu X N, Zheng X P, Qin Q M, Ren H Z and Sun Y J. 2015a. Spatial scaling transformation modeling based on fractal theory for the leaf area index retrieved from remote sensing imagery. Journal of Applied Remote Sensing, 9(1): 096015
Wu L, Qin Q M, Liu X N, Ren H Z, Wang J H, Zheng X P, Ye X and Sun Y J. 2016a. Spatial up-scaling correction for leaf area index based on the fractal theory. Remote Sensing, 8(3): 197
Wu X D, Wen J G, Xiao Q, Liu Q, Peng J J, Dou B C, Li X H, You D Q, Tang Y and Liu Q H. 2016b. Coarse scale in situ albedo observations over heterogeneous snow-free land surfaces and validation strategy: a case of MODIS albedo products preliminary validation over northern China. Remote Sensing of Environment, 184: 25–39
Wu X D, Xiao Q, Wen J G, Liu Q, You D Q, Dou B C, Tang Y and Li X W. 2015b. Optimal nodes selectiveness from WSN to fit field scale albedo observation and validation in long time series in the Foci experiment areas, Heihe. Remote Sensing, 7(11): 14757–14780
徐希孺. 2005. 遥感物理. 北京: 北京大学出版社
Xu X R. 2005. Physical Principles of Remote Sensing. Beijing: Beijing University Press
Zelic A, Chen J M, Liu J and Csillag F. 2002. Algorithms for spatial scaling of net primary productivity using subpixel information//Proceedings of 2002 IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE: 1066–1068 [DOI: 10.1109/igarss.2002.1025777]
Zhang R H, Tian J, Li Z L, Su H B, Chen S H and Tang X Z. 2010. Principles and methods for the validation of quantitative remote sensing products. Science China Earth Sciences, 53(5): 741–751
Zhao L, Yang K, Qin J, Chen Y Y, Tang W J, Montzka C, Wu H, Lin C G, Han M L and Vereecken H. 2013. Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. Journal of Hydrology, 482: 92–104
周觅, 张杰林. 2011. 遥感影像尺度转换及最优尺度选择探讨. 世界核地质科学, 28(2): 94–98
Zhou M and Zhang J L. 2011. Review on scale transformation for remote sensing image and selection of optimal spatial resolution. World Nuclear Geoscience, 28(2): 94–98 (
相关文章
相关作者
相关机构