InSAR deformation data decomposition and information analysis of Jiaozhou bay bridge, Qingdao
- Vol. 24, Issue 7, Pages: 883-893(2020)
DOI: 10.11834/jrs.20208085
扫 描 看 全 文
扫 描 看 全 文
Mao ZHU, Tiyan SHEN, Fenghua LYU, et al. InSAR deformation data decomposition and information analysis of Jiaozhou bay bridge, Qingdao. [J]. Journal of Remote Sensing(Chinese) 24(7):883-893(2020)
本文以青岛市胶州湾跨海大桥为研究对象,针对2014-01—2016-03 PS-InSAR技术测得的形变数据进行信息深度挖掘。在数据处理过程中,首先引入形变随季节变化及形变随温度变化的两种新模型,然后分别采用传统线性模型和这两种模型对PS点形变数据进行了分解,通过对比3种模型与实测形变数据的匹配程度,评估不同模型在桥梁分析过程中的性能。数据分析结果证实,随季节变化的周期型形变是桥梁主要形变,进而线性—周期模型的分析效果最好。同时,基于桥梁某区间的数据,重点分析了该区间内形变信息沿桥梁纵向的剖面图,并结合桥梁结构信息,对伸缩缝两侧PS点的形变特征及成因进行重点讨论。实测数据分析证实了InSAR技术具备监测桥梁微小形变信息的能力。在未来应用过程中,它能对桥梁形变风险进行早期识别,提前对风险桥梁及其风险区域进行预报,并为风险成因分析提供测量数据,最终为城市桥梁风险管理提供技术支持。
The study selected Qingdao Jiaozhou Bay Bridge as the study object and gathered information on deep mining based on InSAR deformation data acquired from Jan 2014 to May 2016.,Two new deformation models with seasonal variation and temperature variation were first introduced in data analysis. These two models and the traditional linear model were utilized to decompose the deformation evolution data. Thereafter, the performance of the different models was evaluated by calculating the deviation component among the three models and the measured data. After analyzing the data of a section of the bridge, the deformation information along the longitudinal direction was acquired. The deformation characteristics of the PS points on both sides of the expansion joint and bridge structure were discussed.,Results were used to confirm that the periodic deformation component was the main deformation component on the bridge, thus validating the performance of the Linear–Periodical model as the best among the models. Meanwhile, the thermal effect of the bridge panels caused the difference in the deformation between the two sides of the expansion joint.,The analysis of measured data confirms that InSAR technology has the capacity to monitor the microdeformation information of the bridge. In the future, it can identify the bridge with deformation risk early, and search the bridge with risk and its corresponding area in advance. At the same time, the measurement data could also be used for risk cause analysis. Finally, it can provide technical support for urban bridge risk management.
形变监测InSAR技术桥梁形变分析胶州湾跨海大桥形变数据分解信息分析
deformation monitoringInSARbridge deformation analysisJiaozhou bay bridgedeformation decompositioninformation analysis
Bamler R and Hartl P . 1998. Synthetic aperture radar interferometry. Inverse Problems, 14(4): R1-R54
Costantini M, Falco S, Malvarosa F, Minati F, Trillo F and Vecchioli F . 2014. Persistent scatterer pair interferometry: approach and application to COSMO-SkyMed SAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(7): 2869-2879 [DOI: 10.1109/JSTARS.2014.2343915http://dx.doi.org/10.1109/JSTARS.2014.2343915 ]
Covello F, Battazza F, Coletta A, Lopinto E, Fiorentino C, Pietranera L, Valentini G and Zoffoli S . 2010. COSMO-SkyMed an existing opportunity for observing the Earth. Journal of Geodynamics, 49( 3/4): 171-180 [DOI: 10.1016/j.jog.2010.01.001http://dx.doi.org/10.1016/j.jog.2010.01.001 ]
Ferretti A, Prati C and Rocca F . 1999. Non-uniform motion monitoring using the permanent scatterers technique//Proceedings of the Second International Workshop on ERS SAR Interferometry. Liege, Belgium: ESA: 1-6
Ferretti A, Prati C and Rocca F . 2000. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212 [DOI: 10.1109/36.868878http://dx.doi.org/10.1109/36.868878 ]
Ferretti A, Prati C and Rocca F . 2001. Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20 [DOI: 10.1109/36.898661http://dx.doi.org/10.1109/36.898661 ]
Fornaro G, Reale D and Verde S . 2013. Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geoscience and Remote Sensing Letters, 10(4): 677-681 [DOI: 10.1109/LGRS.2012.2218214http://dx.doi.org/10.1109/LGRS.2012.2218214 ]
Huang Q H, Ding Y L, Wang Y A and Yin F Z . 2017. InSAR-based longitudinal displacement monitoring and analysis on Nanjing Dashengguan bridge. Journal of Southeast University (Natural Science Edition), 47(3): 584-589
黄其欢, 丁幼亮, 王一安, 尹方舟 . 2017. 基于InSAR的南京大胜关大桥纵向位移监测与分析. 东南大学学报(自然科学版), 47(3): 584-589 [DOI: 10.3969/j.issn.1001-0505.2017.03.028http://dx.doi.org/10.3969/j.issn.1001-0505.2017.03.028 ]
Lazecky M, Hlavacova I, Bakon M, Sousa J J, Perissin D and Patricio G . 2017. Bridge displacements monitoring using space-borne X-band SAR interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(1): 205-210 [DOI: 10.1109/JSTARS.2016.2587778http://dx.doi.org/10.1109/JSTARS.2016.2587778 ]
Lazecký M, Rapant P, Perissin D and Bakoň M . 2014. Deformations of highway over undermined ostrava-svinov area monitored by InSAR using limited Set of SAR images. Procedia Technology, 16: 414-421 [DOI: 10.1016/j.protcy.2014.10.107http://dx.doi.org/10.1016/j.protcy.2014.10.107 ]
Liao M S and Wang T . 2014. Time Series InSAR Technology and Its Application. Beijing: Science Press
廖明生, 王腾 . 2014. 时间序列InSAR技术与应用. 北京: 科学出版社
Massonnet D and Feigl K L . 1998. Radar interferometry and its application to changes in the Earth’s surface. Reviews of Geophysics, 36(4): 441-500 [DOI: 10.1029/97RG03139http://dx.doi.org/10.1029/97RG03139 ]
Massonnet D, Rossi M, Carmona C, Adragna F, Peltzer G, Feigl K and Rabaute T . 1993. The displacement field of the Landers earthquake mapped by radar interferometry. Nature, 364(6433): 138-142 [DOI: 10.1038/364138a0http://dx.doi.org/10.1038/364138a0 ]
Qin X Q, Yang M S, Wang H M, Yang T L, Lin J X and Liao M S . 2016. Application of high-resolution PS-InSAR in deformation characteristics probe of urban rail transit. Acta Geodaetica et Cartographica Sinica, 45(6): 713-721
秦晓琼, 杨梦诗, 王寒梅, 杨天亮, 林金鑫, 廖明生 . 2016. 高分辨率PS-InSAR在轨道交通形变特征探测中的应用. 测绘学报, 45(6): 713-721 [DOI: 10.11947/j.AGCS.2016.20150440http://dx.doi.org/10.11947/j.AGCS.2016.20150440 ]
Su X Z, Su X and Yang X M . 2004. Application of GPS in monitoring deformation of large scaled bridge. Journal of Railway Engineering Society, (1): 77-79
苏新洲, 苏欣, 杨晓明 . 2004. GPS在大型桥梁形变监测中的应用. 铁道工程学报, (1): 77-79 [DOI: 10.3969/j.issn.1006-2106.2004.01.018http://dx.doi.org/10.3969/j.issn.1006-2106.2004.01.018 ]
Wang D and Yang S B . 2016. Discussion on bridge deformation monitoring technology. Geospatial Information, 14(6): 72-74, 88
王东, 杨胜保 . 2016. 桥梁变形监测技术方案探讨. 地理空间信息, 14(6): 72-74, 88 [DOI: 10.3969/j.issn.1672-4623.2016.06.024http://dx.doi.org/10.3969/j.issn.1672-4623.2016.06.024 ]
Yao L B, Yao P, Wang R P and Meng X L . 2008. GPS-based dynamic monitoring and analysis of Nanpu bridge deformation. Journal of Tongji University (Natural Science), 36(12): 1633-1636, 1664
姚连璧, 姚平, 王人鹏, 孟晓林 . 2008. 南浦大桥形变GPS动态监测试验及结果分析. 同济大学学报(自然科学版), 36(12): 1633-1636, 1664 [DOI: 10.3321/j.issn:0253-374X.2008.12.007http://dx.doi.org/10.3321/j.issn:0253-374X.2008.12.007 ]
Zebker H A, Rosen P A, Goldstein R M, Gabriel A and Werner C L . 1994. On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. Journal of Geophysical Research: Solid Earth, 99 (B 10): 19617-1963 4 [DOI: 10.1029/94JB01179http://dx.doi.org/10.1029/94JB01179 ]
Zhao J W, Wu J C, Ding X L and Wang M Z . 2017. Elevation extraction and deformation monitoring by multitemporal InSAR of Lupu bridge in Shanghai. Remote Sensing, 9(9): 897 [DOI: 10.3390/rs9090897http://dx.doi.org/10.3390/rs9090897 ]
Zhu J J, Li Z W and Hu J . 2017. Research progress and methods of InSAR for deformation monitoring. Acta Geodaetica et Cartographica Sinica, 46(10): 1717-1733
朱建军, 李志伟, 胡俊 . 2017. InSAR变形监测方法与研究进展. 测绘学报, 46(10): 1717-1733 [DOI: 10.11947/j.AGCS.2017.20170350http://dx.doi.org/10.11947/j.AGCS.2017.20170350 ]
相关文章
相关作者
相关机构