Temporal and distribution characteristic of CO2 concentration over China based on GOSAT satellite data
- Vol. 24, Issue 3, Pages: 319-325(2020)
Received:08 August 2018,
Published:07 March 2020
DOI: 10.11834/jrs.20208324
移动端阅览


浏览全部资源
扫码关注微信
Received:08 August 2018,
Published:07 March 2020
移动端阅览
中国地区大气CO
2
浓度对全球气候变化有重要的影响。本文基于日本GOSAT卫星短波红外CO
2
的长期观测数据,对2010年—2016年中国大陆上空CO
2
浓度的分布特征和变化趋势进行分析研究。利用高精度的地基TCCON站点CO
2
观测对GOSAT CO
2
数据进行精度验证,结果表明,GOSAT CO
2
具有较高的精度,相对TCCON CO
2
的偏差为-1.04±2.10 ppm,两者的相关系数高达0.90;利用中国地区7年的GOSAT CO
2
观测数据分析研究显示,CO
2
浓度高值主要分布在中国的浙江—江苏—安徽地区、京津冀地区和湖南—湖北—河南—陕西地区;截至2016年,中国大部地区CO
2
浓度超过400 ppm;中国大陆CO
2
平均浓度呈现明显的逐年增长趋势,从2010年的387.76 ppm增长到2016年的402.18 ppm,年增长率约为2.31 ppm/a,略高于同期全球平均水平。
Atmospheric CO
2
concentration over China has significant effects on the global climate change. To reliably predict the impact of atmospheric CO
2
on global climate change
it is necessary to clarify the distribution and variation of atmospheric CO
2
concentration. Based on long term short-wavelength infrared CO
2
dataset observed by GOSAT
the temporal variation and spatial distribution characteristics and variation trend of atmospheric CO
2
concentration was investigated and analysed over China during 2010 to 2016. To ensure the quality of GOSAT CO
2
dataset used in this paper
the GOSAT XCO
2
dataset was validated with high precise XCO
2
from ground-based TCCON sites. Multi-year mean of XCO
2
was illustrated to show the spatial heterogeneity of CO
2
concentration over China. Interannual variation and annual growth of XCO
2
was also presented and discussed. The results showed that GOSAT XCO
2
dataset was biased by -1.04±2.10 ppm with respect to TCCON XCO
2
and the correlation coefficient was 0.90 between them. Seven years (2010~2016) of GOSAT CO
2
dataset showed that high CO
2
concentrations were mainly located in Zhejiang-Jiangsu-Anhui region
Beijing-Tianjin-Hebei region
and Hunan-Hubei-Henan-Shanxi region in China. The CO
2
concentration reached 400 ppm over most regions in China until 2016. The annual average of CO
2
concentration showed an increase trend year by year over China
increasing from 387.76 in 2010 to 402.18 ppm in 2016. The annual growth rate of CO
2
concentration was evaluated to be 2.31 ppm/a during this period over China
which was slightly higher than the average in the world. This paper shows that the CO
2
concentration observations from satellites could provide some references for the climate change response strategies and atmospheric environment control.
Bai W G , Zhang X Y , Zhang P . 2010 . Temporal and distribution of tropospheric CO 2 over China based on satellite observation . Chinese Science Bulletin , 55 ( 30 ): 2953 - 2960
白文广 , 张兴赢 , 张鹏 . 2010 . 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析 . 科学通报 , 55 ( 30 ): 2953 - 2960
Bu R , Lei L P , Guo L J , Liu D and Zeng Z C . 2015 . Analysis of temporal and spatial potential applications of satellite remote sensing of atmospheric CO2 concentration monitoring . Journal of Remote Sensing , 19 ( 1 ) : 34 - 45 [DOI: 10.11834/jrs.20154031]
布然 , 雷莉萍 , 郭丽洁 , 刘达 , 曾招城 . 2015 . 大气CO2浓度时空变化卫星遥感监测的应用潜力分析 . 遥感学报 , 19 ( 1 ) : 34 - 45
Chevallier F . 2007 . Impact of correlated observation errors on inverted CO 2 surface fluxes from OCO measurements . Geophysical Research Letters , 34 ( 24 ), L24804 .
Chen L F , Zhang Y , Zou M M , Xu Q , Li L J , Li X Y and Tao J H . 2015 . Overview of atmospheric CO2 remote sensing from space . Journal of Remote Sensing , 19 ( 1 ) : 1 - 11 [ DOI: 10.11834/jrs.20153331 http://dx.doi.org/10.11834/jrs.20153331 ]
陈良富 , 张莹 , 邹铭敏 , 徐谦 , 李令军 , 李小英 , 陶金花 . 2015 . 大气CO2浓度卫星遥感进展 . 遥感学报 , 19 ( 1 ) : 1 - 11
Gurney K.R. , Law R.M. , Denning A.S. , et al . 2002 . Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models . Nature , 415 , 626 - 629 .
Houweling S. , Breon F.M. , Aben I. , et al . 2004 . Inverse modeling of CO 2 sources and sinks using satellite data: A synthetic inter-comparison of measurement techniques and their performance as a function of space and time . Atmospheric Chemistry and Physics , 4 , 523 - 538 .
Hungershoefer K. , Breon F . -M. , Peylin P. , et al . 2010 . Evaluation of various observing systems for the global monitoring of CO 2 surface fluxes . Atmospheric Chemistry and Physics , 10 , 503 - 520 .
IPCC (Intergovernmental Panel on Climate Change) , Solomon S. , Qin D. , Manning M. , et al . 2007 . Climate change 2007: The physical science basis, contribution of working group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge (UK), New York (USA) .
IPCC (Intergovernmental Panel on Climate Change) . 2013 . Climate Change 2013: The Physical Science Basis, Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, USA .
Kuze A. , Suto H. , Nakajima M. , et al . 2009 . Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on Greenhouse Gases Observing Satellite for greenhouse gases monitoring . Applied Optics , 48 ( 35 ), 6716 - 6733 .
Miller C.E. , Crisp D. , DeCola P.L. , et al . 2007 . Precision requirements for space-based XCO 2 data . Journal of Geophysical Research-atmospheres , 112 , D10314 .
Morino I. , Uchino O. , Inoue M. , et al . 2011 . Preliminary validation of column-averaged volume mixing rations of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra . Atmospheric Measurement Techniques , 4 , 1061 - 1076 .
Qu Yan , Zhang Chunmin , Wang Dingyi , et al . 2013 . Comparison of atmospheric CO 2 observed by GOSAT and two ground stations in China . International Journal of Remote Sensing , 34 ( 11 ): 3938 - 3946 .
Rayner P.J. , and O’Brien D . M . 2001 . The utility of remotely sensed CO 2 concentration data in surface source inversions . Geophysical Research Letters . 28 ( 1 ), 175 - 178 .
Rodgers C . D . 2000 . Inverse Methods for Atmospheric Sounding: Theory and Practice . World Scientific , Singapore , 81 - 99 .
Schneising O. , Buchwitz M. , Reuter M . et al . 2011 . Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY . Atmosphere Chemistry and Physics , 11 : 2863 - 2880 .
Stephens B.B. , Gurney K.R. , Tans P.P. , et al . 2007 . Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO 2 . Science , 316 , 1732 - 1735 .
Wang G C , Wen Y P , Kong Q L , et al . 2002 . The background concentration and variation of CO2 over Chinese mainland . Chinese Science Bulletin , 47 ( 10 ): 780 - 783
王庚辰 , 温玉璞 , 孔琴心 , 等 . 2002 . 中国大陆上空CO 2 的本底浓度及其变化 . 科学通报 , 47 ( 10 ): 780 - 783
Wang J N , Cai B F , Cao D , et al . 2014 . China 10 km carbon dioxide emissions grid dataset and spatial characteristic analysis . China Environmental Science , 34 ( 1 ): 1 ~ 6
王金南 , 蔡博峰 , 曹东 等 . 2014 . 中国10km二氧化碳排放格网及空间特征分析 . 中国环境科学 , 34 ( 1 ): 1 ~ 6
C. Le Quere , M. Moriarty , R. M. Andrew , et al ., WMO (World Meteorological Organization) , 2015 . Global Carbon budget 2015 . Earth System Science Data , 7 , 349 - 396 , 2015 .
Wunch D. , Toon G.C. , Wennberg P.O. , et al . 2010 . Calibration of the Total Carbon Column Observing Network using aircraft profile data . Atmospheric Measurement Techniques , 3 , 1351 - 1362 .
Wunch D. , Toon G.C. , Blavier J . F . L ., et al . 2011 . The Total Carbon Column Observing Network . Philosophical Transactions Of The Society A-Mathematical Physical And Engineering Sciences , 369 , 2087 - 2112 .
Yoshida Y. , Ota Y. , Eguchi N. , et al . 2011 . Retrieval algorithm for CO 2 and CH 4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite . Atmospheric Measurement Techniques , 4 , 717 - 734 .
Yoshida Y. , Kikuchi N. , Morino I. , et al . 2013 . Improvement of the retrieval algorithm for GOSAT SWIR XCO 2 and CH 4 and their validation using TCCON data . Atmospheric Measurement Techniques , 6 , 1533 - 1547 .
Zhang Huifang , Chen Baozhang , Xu Guang , et al . 2015 . Comparing simulated atmospheric carbon dioxide concentration with GOSAT retrievals . Science Bulletin , 60 ( 3 ): 380 - 386 .
京公网安备11010802024621