Simulation of sea surface temperature retrieval based on GF-5 thermal infrared data
- Vol. 24, Issue 7, Pages: 852-866(2020)
DOI: 10.11834/jrs.20209062
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
崔文杰,李家国,李忠,朱利,王殿忠,张宁.2020.高分五号热红外传感器多通道SST反演.遥感学报,24(7): 852-866
Cui W J,Li J G,Li Z,Zhu L,Wang D Z and Zhang N. 2020. Simulation of sea surface temperature retrieval based on GF-5 thermal infrared data. Journal of Remote Sensing(Chinese),24(7): 852-866[DOI:10.11834/jrs.20209062]
2018-05高分五号(GF-5)卫星发射升空,其上搭载的全谱段成像仪在热红外8—13 µm谱段范围内具有4个温度反演通道(B09,B10,B11,B12),空间分辨率设计优于40 m,在国内民用传感器领域实现了由单通道向多通道、中空间分辨率向高空间分辨率的跨越式突破,使得GF-5卫星热红外数据在地表热环境遥感领域具有极其重要应用价值。本研究基于GF-5的4个热红外通道的通道响应函数,利用全球742条TIGR(Thermodynamic Initial Guess Retrieval)探空廓线数据,进行不同观测角度、水汽含量和海表发射率条件下的MODTRAN4.0(Moderate resolution atmospheric Transmittance and Radiance code4.0)辐射传输过程模拟,基于模拟结果分别对两通道、三通道和四通道劈窗算法海表温度SST( Sea Surface Temperature)反演系数进行修订,并分析观测角度、水汽含量和海表发射率对不同通道组合的精度影响,并通过GF-5卫星实际反演的SST结果进行验证。GF-5全谱段成像仪SST反演两通道劈窗算法组合共有6种,即B09-B10、B09-B11、B09-B12、B10-B11、B10-B12、B11-B12;三通道劈窗算法组合共有4种,即B09-B10-B11、B09-B10-B12、B09-B11-B12、B10-B11-B12;四通道劈窗算法组合1种,即B09-B10-B11-B12。通过对不同通道组合形式研究发现,水汽含量对SST反演精度有较大的影响,且温度反演的精度随着水汽含量的增加而降低;其次是观测角度,SST反演精度随着观测天顶角的增大而降低;最后是发射率的影响,两通道、三通道和四通道劈窗算法SST反演精度随着发射率的变化总体在0.1 K以内变化。最后以大亚湾核电站周围海域为验证区,用GF-5热红外遥感影像进行SST的反演并做误差分析,结果表明B09-B10通道SST反演实际误差为0.57 K,反演精度较高,实际误差与理论模拟误差相差0.24 K,差异的来源主要包括辐射定标和传感器噪声等要素影响,其他通道形式反演精度有待于传感器响应稳定后进一步验证。
A Tropical Cyclone (TC) is one of the most destructive meteorological disasters. The strong winds and heavy precipitation have significant effect on people’s lives, property, and social and economic development. Therefore, the accuracy of the path and intensity prediction of TCs is always an important consideration in meteorological research. However, considering the complexity and variability of typhoon cloud patterns, the existing objective methods are usually based on statistical linear regression. Moreover, they still have deficiencies in expressing the dynamic changes of the complex characteristics of TC cloud patterns. The deep learning algorithm performs well in high-dimensional nonlinear modeling and accurately identifies the input mode with displacement and slight deformation. This algorithm finds significance in TC monitoring with dynamic changes over time. To develop TC intensity estimation technology further in the field of satellite remote sensing, this study applied a new machine-learning technology to analyze and to study the TC intensity of FY-4A/AGRI data from China’s second-generation stationary meteorological satellite.,First, a deep Convolution Neural Network (CNN) model was used to distinguish effectively and estimate quantitatively the TC intensity level and center wind speed. The images of day and night were placed into the convolution sampling channel of the CNN to obtain and combine same-size spectral features. Then, multilayer convolution, pooling, nonlinear mapping, and other operations were used to mine the input characteristics deeply. Finally, the TC intensity was estimated. The experiment was divided into the TC intensity classification test and the quantitative estimation test of the TC center maximum wind speed. The CNN model was used to convert the recognition of the TC intensity into the pattern recognition of satellite cloud images, which could classify and identify the TC level.,The experiment found that the recognition accuracy of the TC intensity was all above 95% regardless of the overall classification accuracy or the respective accuracy of day and night statistics. Compared with k-nearest neighbor, error back-propagation neural network, multiple linear regression, support vector machine, and other classical classification algorithms, it improves by 7-16 percentage points. Moreover, the CNN is also superior to the classical algorithm in terms of classification accuracy. The CNN model comprises two fully connected network layers (each layer has three neurons). The TC wind speed can be quantitatively estimated by prior training samples of the network parameters. Compared with the data of Tropical Cyclone 2017 Yearbook, the mean absolute error of the wind speed was 1.75 m/s, and the root mean square error of the wind speed was 2.04 m/s, which were lower than the corresponding errors of Deviation Angle Variance Technique (DAVT) by 85.70% and 84.38%. Thus, the CNN algorithm has a high application prospect in the quantitative estimation of typhoon intensity.,As the first second-generation Chinese geostationary meteorological satellite to be launched, FY-4A has its advantages of multichannel structure and high spatial and temporal resolution. On the basis of these features, the advantages of the techniques of the deep neural network, and the flexible structure of CNN, this study proposes an improved CNN model that is tailor-made for FY-4A data. The model has the capacity to mine the morphological characteristic of typhoons deeply and effectively and achieve high-precision typhoon intensity estimation. This model has positive research value and application prospect for the quantitative estimation of typhoon intensity.
遥感SST反演GF-5热红外遥感两通道劈窗算法三通道劈窗算法四通道劈窗算法
remote sensingsea surface temperature retrievalGF-5thermal infrared remote sensingtwo-channel split-window algorithmthree-channel split-window algorithmfour-channel split-window algorithm
Ahn M H, Sohn E H, Hwang B J, Chung C Y and Wu X Q . 2006. Derivation of regression coefficients for sea surface temperature retrieval over East Asia. Advances in Atmospheric Sciences, 23(3): 474-486 [DOI: 10.1007/s00376-006-0474-7http://dx.doi.org/10.1007/s00376-006-0474-7 ]
Becker F . 1987. The impact of spectral emissivity on the measurement of land surface temperature from a satellite. International Journal of Remote Sensing, 8(10): 1509-1522 [DOI: 10.1080/01431168 708954793http://dx.doi.org/10.1080/01431168708954793 ]
Bloszies C and Forman S L . 2015. Potential relation between equatorial sea surface temperatures and historic water level variability for Lake Turkana, Kenya. Journal of Hydrology, 520: 489-501 [DOI: 10.1016/j.jhydrol.2014.10.001http://dx.doi.org/10.1016/j.jhydrol.2014.10.001 ]
Cooley T, Anderson G P, Felde G W, Hoke M L, Ratkowski A J, Chetwynd J H, Gardner J A, Adler-Golden S M, Matthew M W, Berk A Bernstein L A, Acharya P K, Miller D and Lewis P . 2002. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation//Proceedings of IEEE International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada: IEEE: 1414-1418 [DOI: 10.1109/IGARSS.2002.1026134http://dx.doi.org/10.1109/IGARSS.2002.1026134 ]
Despini F and Teggi S . 2013. Analysis of temperature maps of waterbodies obtained from ASTER TIR images. International Journal of Remote Sensing, 34( 9/10): 3636-3653 [DOI: 10.1080/01431161. 2012.716544http://dx.doi.org/10.1080/01431161.2012.716544 ]
Donlon C, Robinson I, Casey K S, Vazquez-Cuervo J, Armstrong E, Arino O, Gentemann C, May D, LeBorgne P, Piollé J, Barton I, Beggs H, Poulter D J S, Merchant C J, Bingham A, Heinz S, Harris A, Wick G, Emery B, Minnett P, Evans R, Llewellyn-Jones D, Mutlow C, Reynolds R W, Kawamura H and Rayner N . 2007. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bulletin of the American Meteorological Society, 88(8): 1197-1214 [DOI: 10.1175/BAMS-88-8-1197http://dx.doi.org/10.1175/BAMS-88-8-1197 ]
Embury O, Merchant C J and Corlett G K . 2012. A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: initial validation, accounting for skin and diurnal variability effects. Remote Sensing of Environment, 116: 62-78 [DOI: 10.1016/j.rse.2011.02.028http://dx.doi.org/10.1016/j.rse.2011.02.028 ]
Feng S Z, Li F Q and Li S J . 1999. An Introduction to Marine Science. Beijing: Higher Education Press
冯士筰, 李凤岐, 李少菁 . 1999. 海洋科学导论. 北京: 高等教育出版社
Gong S Q, Dong G K, Sun D Y, Zhao Q H, Li Y M and Huang J Z . 2011. Application of HJ/IRS to retrieve water surface temperature in Lake Taihu, China//Proceedings of International Conference on Information Science and Technology. Nanjing: IEEE: 560-565 [DOI: 10.1109/ICIST.2011.5765313http://dx.doi.org/10.1109/ICIST.2011.5765313 ]
Handcock R N, Torgersen C E, Cherkauer K A, Gillespie A R, Tockner K, Faux R N and Tan J . 2012. Thermal infrared remote sensing of water temperature in riverine landscapes//Carbonneau P E and Piégay H, eds. Fluvial Remote Sensing for Science and Management. Hoboken, NJ: Wiley [DOI: 10.1002/9781119940791.ch5http://dx.doi.org/10.1002/9781119940791.ch5 ]
Hilburn K A and Wentz F J . 2008. Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). Journal of Applied Meteorology and Climatology, 47(3): 778-794 [DOI: 10.1175/2007JAMC1635.1http://dx.doi.org/10.1175/2007JAMC1635.1 ]
Hu D Y,Qiao K,Wang X L,Zhao L M and Ji G H . 2015. Land surface temperature retrieval from Landsat 8 thermal infrared data using mono-window algorithm. Journal of Remote Sensing,19(6): 964-976
胡德勇, 乔琨, 王兴玲, 赵利民, 季国华 . 2015. 单窗算法结合 Landsat 8 热红外数据反演地表温度. 遥感学报, 19(6): 964-976 [DOI: 10.11834/jrs.20155038http://dx.doi.org/10.11834/jrs.20155038 ]
Hulley G C, Hook S J and Schneider P . 2011. Optimized split-window coefficients for deriving surface temperatures from inland water bodies. Remote Sensing of Environment, 115(12): 3758-3769 [DOI: 10.1016/j.rse.2011.09.014http://dx.doi.org/10.1016/j.rse.2011.09.014 ]
Huo W J and Han Z . 2013. Retrieval of sea surface temperature from AMSR-E and MODIS in the Northern Indian Ocean. Journal of Shanghai Ocean University, 22(3): 439-445
霍文娟, 韩震 . 2013. 基于AMSR-E与MODIS数据海表面温度遥感反演研究. 上海海洋大学学报, 22(3): 439-445
Ingleton T and McMinn A . 2012. Thermal plume effects: a multi-disciplinary approach for assessing effects of thermal pollution on estuaries using benthic diatoms and satellite imagery. Estuarine, Coastal and Shelf Science, 99: 132-144 [DOI: 10.1016/j.ecss.2011.12.024http://dx.doi.org/10.1016/j.ecss.2011.12.024 ]
Jiménez-Muñoz J C and Sobrino J A . 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108 (D 22): 4688 [DOI: 10.1029/2003jd003480http://dx.doi.org/10.1029/2003jd003480 ]
Jiménez-Muñoz J C, Sobrino J, Skoković D, Mattar C and Cristóbal J . 2014. Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10): 1840-1843 [DOI: 10.1109/LGRS.2014.2312032http://dx.doi.org/10.1109/LGRS.2014.2312032 ]
Karagali I, Høyer J and Hasager C . 2012. SST diurnal variability in the North Sea and the Baltic Sea. Remote Sensing of Environment, 121: 159-170 [DOI: 10.1016/j.rse.2012.01.016http://dx.doi.org/10.1016/j.rse.2012.01.016 ]
Kawai Y and Kawamura H . 2002. Evaluation of the diurnal warming of sea surface temperature using satellite-derived marine meteorological data. Journal of Oceanography, 58(6): 805-814 [DOI: 10.1023/A:1022867028876http://dx.doi.org/10.1023/A:1022867028876 ]
Li Z L, Tang B H, Wu H, Ren H Z, Yan G J, Wan Z M, Trigo I F and Sobrino J A . 2013. Satellite-derived land surface temperature: current status and perspectives. Remote Sensing of Environment, 131: 14-37 [DOI: 10.1016/j.rse.2012.12.008http://dx.doi.org/10.1016/j.rse.2012.12.008 ]
Li Z L, Duan S B, Tang B H, Wu H, Ren H Z, Yan G J, Tang R L and Leng P . 2016. Review of methods for land surface temperature derived from thermal infrared remotely sensed data. Journal of Remote Sensing, 20(5): 899-920
李召良, 段四波, 唐伯惠, 吴晔, 任华忠, 阎广建, 唐荣林, 冷佩 . 2016. 热红外地表温度遥感反演方法研究进展. 遥感学报, 20(5): 899-920)[DOI:10.11834/jrs.20166192http://dx.doi.org/10.11834/jrs.20166192 ]
Luo X F, Wei H and Yuan C Y . 2012. Inter-annual and decadal variations of sea surface temperature in the yellow sea by satellite data. Periodical of Ocean University of China, 42(10): 19-25
罗晓凡, 魏皓, 袁承仪 . 2012. 利用卫星资料分析黄海海表温度的年际与年代际变化. 中国海洋大学学报, 42(10): 19-25 [DOI: 10.16441/j.cnki.hdxb.2012.10.003http://dx.doi.org/10.16441/j.cnki.hdxb.2012.10.003 ]
Mao K B and Qin Z H . 2004. The transmission model of atmospheric radiation and the computation of transmittance of MODTRAN. Geomatics and Spatial Information Technology, 27(4): 1-3
毛克彪, 覃志豪 . 2004. 大气辐射传输模型及MODTRAN中透过率计算. 测绘与空间地理信息, 27(4): 1-3 [DOI: 10.3969/j.issn.1672-5867.2004.04.001http://dx.doi.org/10.3969/j.issn.1672-5867.2004.04.001 ]
McClain E P, Pichel W G, Walton C C, Ahmad Z and Sutton J . 1983. Multi-channel improvements to satellite-derived global sea surface temperatures. Advances in Space Research, 2(6): 43-47 [DOI: 10.1016/0273-1177(82)90120-xhttp://dx.doi.org/10.1016/0273-1177(82)90120-x ]
McMillin L M . 1975. Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, 80(36): 5113-5117 [DOI: 10.1029/JC080i036p05113http://dx.doi.org/10.1029/JC080i036p05113 ]
Merchant C J, Harris A R, Maturi E, Embury O, MacCallum S N, Mittaz J and Old C P . 2009. Sea surface temperature estimation from the Geostationary operational environmental satellite-12 (GOES-12). Journal of Atmospheric and Oceanic Technology, 26(3): 570-581 [DOI: 10.1175/2008JTECHO596.1http://dx.doi.org/10.1175/2008JTECHO596.1 ]
Mesias J M, Bisagni J J and Brunner A M E G . 2007. A high-resolution satellite-derived sea surface temperature climatology for the western North Atlantic Ocean. Continental Shelf Research, 27(2): 191-207 [DOI: 10.1016/j.csr.2006.10.002http://dx.doi.org/10.1016/j.csr.2006.10.002 ]
Minnett P . 2003. Radiometric measurements of the sea-surface skin temperature: the competing roles of the diurnal thermocline and the cool skin. International Journal of Remote Sensing, 24(24): 5033-5047 [DOI: 10.1080/0143116031000095880http://dx.doi.org/10.1080/0143116031000095880 ]
Pahlevan N, Garrett A J, Gerace A D and Schott J R . 2012. Integrating landsat-7 imagery with physics-based models for quantitative mapping of coastal waters near river discharges. Photogrammetric Engineering and Remote Sensing, 78(11): 1163-1174 [DOI: 10.14358/pers.78.11.1163http://dx.doi.org/10.14358/pers.78.11.1163 ]
Qin Z, Karnieli A and Berliner P . 2001. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 22(18): 3719-3746 [DOI: 10.1080/01431160010006971http://dx.doi.org/10.1080/01431160010006971 ]
Ren H Z, Ye X, Liu R Y, Dong J J and Qin Q M . 2018. Improving land surface temperature and emissivity retrieval from the Chinese Gaofen-5 satellite using a hybrid algorithm. IEEE Transactions on Geoscience and Remote Sensing, 56(2): 1080-1090 [DOI: 10.1109/TGRS.2017.2758804http://dx.doi.org/10.1109/TGRS.2017.2758804 ]
Reynolds R W, Rayner N A, Smith T M, Smith D C and Wang W Q . 2002. An improved in situ and satellite SST analysis for climate. Journal of Climate, 15(13): 1609-1625 [DOI: 10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2http://dx.doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 ]
Reynolds R W and Smith T M . 1994. Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate, 7(6): 929-948 [DOI: 10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2http://dx.doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2 ]
Tian G L . 2006. Thermal Remote Sensing. Beijing: Electronic Industry Press
田国良 . 2006. 热红外遥感. 北京: 电子工业出版社
Walton C C, Pichel W G, Sapper J F and May D A . 1998. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. Journal of Geophysical Research: Oceans, 103(C 12: 27999-2801 2 [DOI: 10.1029/98JC02370http://dx.doi.org/10.1029/98JC02370 ]
Wan Z M . 2008. New refinements and validation of the MODIS land-surface temperature/emissivity products. Remote Sensing of Environment, 112(1): 59-74 [DOI: 10.1016/j.rse.2006.06.026http://dx.doi.org/10.1016/j.rse.2006.06.026 ]
Wang M M, He G J, Zhang Z M, Wang G , Wang Z H, Yin R Y, Cui S A, Wu Z J and Cao X J . 2019a. A radiance-based split-window algorithm for land surface temperature retrieval: theory and application to MODIS data. International Journal of Applied Earth Observation and Geoinformation, 76: 204-217 [DOI: 10.1016/j.jag.2018.11.015http://dx.doi.org/10.1016/j.jag.2018.11.015 ]
Wang M M, Zhang Z J, Hu T and Liu X G . 2019b. A practical single-channel algorithm for land surface temperature retrieval: application to Landsat series data. Journal of Geophysical Research: Atmospheres, 124(1): 299-316 [DOI: 10.1029/2018JD029330http://dx.doi.org/10.1029/2018JD029330 ]
Xing S X . 2011. Infrared Thermal Imaging and Signal Processing. Beijing: National Defense Industry Press
邢素霞 . 2011. 红外热成像与信号处理. 北京: 国防工业出版社
Yang S M and Tao W Q . 1998. Heat Transfer. 3rd ed. Beijing: Higher Education Press
杨世铭, 陶文铨 . 1998. 传热学. 3版. 北京: 高等教育出版社
Ye X, Ren H Z, Liu R Y, Qin Q M, Liu Y and Dong J J . 2017. Land surface temperature estimate from Chinese Gaofen-5 satellite data using split-window algorithm. IEEE Transactions on Geoscience and Remote Sensing, 55(10): 5877-5888 [DOI: 10.1109/TGRS.2017.2716401http://dx.doi.org/10.1109/TGRS.2017.2716401 ]
Zhu L, Zhao L M, Wang Q, Zhang A L, Wu C Q, Li J G and Shi J X . 2014. Monitoring the thermal plume from coastal nuclear power plant using satellite remote sensing data: modeling and validation. Spectroscopy and Spectral Analysis, 34(11): 3079-3084
朱利, 赵利民, 王桥, 张爱玲, 吴传庆, 李家国, 石继香 . 2014. 核电站温排水分布卫星遥感监测及验证. 光谱学与光谱分析, 34(11): 3079-3084) [DOI: 10.3964/j.issn.1000-0593(201411-3079-06http://dx.doi.org/10.3964/j.issn.1000-0593(2014)11-3079-06 ]
相关文章
相关作者
相关机构