Remote Sensing Technology and Method | Views : 0 下载量: 986 CSCD: 4
  • Export

  • Share

  • Collection

  • Album

    • Freshly-opened swidden mapping using Support Vector Machine (SVM) and spatial characteristics in Phongsaly Province, Laos

    • Vol. 26, Issue 11, Pages: 2329-2343(2022)   

      Received:08 December 2020

      Published:07 November 2022

    • DOI: 10.11834/jrs.20211113     

    移动端阅览

  • Li P,Jiang N S, Feng Z M and Xiao C W. 2022. Freshly-opened swidden mapping using Support Vector Machine (SVM) and spatial characteristics in Phongsaly Province, Laos. National Remote Sensing Bulletin, 26(11):2329-2343 DOI: 10.11834/jrs.20211113.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

TANG Yijie 同济大学 测绘与地理信息学院
WANG Qunming 同济大学 测绘与地理信息学院
GAO Bo 太原理工大学 矿业工程学院
HAO Xiaohua 中国科学院西北生态环境资源研究院 甘肃省遥感重点实验室;中国科学院西北生态环境资源研究院 黑河遥感试验研究站
HE Dongcai 太原理工大学 矿业工程学院
ZHAO Qin 中国科学院西北生态环境资源研究院 甘肃省遥感重点实验室
JI Wenzheng 中国科学院西北生态环境资源研究院 甘肃省遥感重点实验室
REN Hongrui 太原理工大学 矿业工程学院

相关机构

College of Surveying and Geo-Informatics, Tongji University
College of Mining Engineering, Taiyuan University of Technology
Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Heihe Remote Sensing Experimental Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
Institute of Desert Meteorology, China Meteorological Administration
0