Retrieval and validation of the land surface temperature from FY-3D MERSI-II
- Vol. 25, Issue 8, Pages: 1792-1807(2021)
Published: 07 August 2021
DOI: 10.11834/jrs.20211302
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 07 August 2021 ,
扫 描 看 全 文
程元良,吴骅,李召良,钱永刚.2021.FY-3D MERSI-II地表温度遥感反演与验证.遥感学报,25(8): 1792-1807
Cheng Y L,Wu H,Li Z L and Qian Y G. 2021. Retrieval and validation of the land surface temperature from FY-3D MERSI-II. National Remote Sensing Bulletin, 25(8):1792-1807
地表温度是是决定地表辐射能量收支的重要变量,在岩石圈、水圈、生物圈和大气圈的能量平衡和水量平衡研究中起着重要作用。利用热红外遥感技术可实现区域和全球尺度地表温度的快速获取,其受到了研究者的广泛关注。目前,FY-3D是国内光谱分辨率最高的对地观测卫星,极大的提高了对地观测能力,其搭载的中分辨率光谱成像仪(MERSI-II)经过大幅升级改进,性能有了显著提升,热红外数据的空间分辨率达到了250 m。本文使用大气辐射传输模型MODTRAN 5模拟了MERSI-II传感器热红外通道星上观测数据。在此基础上,构建了通用劈窗地表温度反演模型,结合ASTER GED全球地表发射率产品以及MERSI-II自身大气水汽反演算法,发展了地表温度遥感反演方法。最后,利用2019-08内蒙古乌海沙漠地区及美国SURFRAD多个站点的实测地表温度数据对本文提出的方法进行了验证。研究结果表明,相较地表实测数据,构建的劈窗算法反演的地表温度RMSE在1.6—2.6 K,反演精度达到了预期目标,还具有较高的空间分辨率,可以用于业务化的地表温度的反演,同时也说明其辐射定标精度有了一定保证,有效满足了区域和全球尺度地表温度遥感监测应用需求。
Surface temperature is an important variable that determines surface radiation energy budget
and plays an important role in the study of energy balance and water balance in the lithosphere
hydrosphere
biosphere and atmosphere. Thermal infrared remote sensing technology can be used to achieve rapid acquisition of regional and global land surface temperature
which has been widely concerned by researchers. At present
FY-3D is the earth observation satellite with the highest spectral resolution in China
which has greatly improved the earth observation capability. The Moderate Resolution Spectral Imager (MERSI-II) carried by FY-3D has been greatly upgraded and improved
and its performance has been significantly improved. The spatial resolution of thermal infrared data has reached 250 m. In this paper
the atmospheric radiation transfer model MODTRAN 5 is used to simulate the MERSI-II thermal infrared channel satellite observations. On this basis
construct the land surface temperature inversion model of the generalized split-window. Combined with ASTER GED global surface emissivity product and MERSI-II atmospheric water vapor content inversion algorithm
the technical process system of remote sensing inversion of land surface temperature is developed. Finally
the proposed method was verified by using the measured surface temperature data from several stations in the Wuhai of Inner Mongolia and SURFRAD stations in the United States in August 2019. The results show that compared with the measured surface temperature data
the RMSE of the land surface temperature inversion based on the generalized split-window algorithm is between 1.6 K and 2.6 K for all sites. The accuracy of inversion has reached the expected target
and it has a high spatial resolution
which can be used in the inversion of operational surface temperature. At the same time
it also shows that the accuracy of radiometric calibration is guaranteed to a certain extent
which effectively meets the application requirements of regional and global surface temperature remote sensing monitoring.
地表温度劈窗算法风云三号D星MERSI-IIMODTRAN
land surface temperaturesplit-window algorithmFY-3DMERSI-IIMODTRAN
Abbasi B, Qin Z H, Du W H, Fan J L, Zhao C L, Hang Q Y, Zhao S H and Li S F. 2020. An Algorithm to retrieve total precipitable water vapor in the atmosphere from FengYun 3D medium resolution spectral imager 2 (FY-3D MERSI-2) data. Remote Sensing, 12(21): 3469 [DOI: 10.3390/rs12213469http://dx.doi.org/10.3390/rs12213469]
Atitar M and Sobrino J A. 2009. A split-window algorithm for estimating lst from meteosat 9 data: test and comparison with in situ data and MODIS LSTs. IEEE Geoscience and Remote Sensing Letters, 6(1): 122-126 [DOI: 10.1109/LGRS.2008.2006410http://dx.doi.org/10.1109/LGRS.2008.2006410]
Augustine J A, DeLuisi J J and Long C N. 2000. SURFRAD-A National Surface Radiation Budget Network for Atmospheric Research, Bulletin of the American Meteorological Society, 81(10), 2341-2358 [DOI: 10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2http://dx.doi.org/10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2]
Barducci A and Pippi I. 1996. Temperature and Emissivity Retrieval from Remotely Sensed Images Using the “Grey Body Emissivity” Method. IEEE Transactions on Geoscience and Remote Sensing, 34: 681-95 [DOI: 10.1109/36.499748http://dx.doi.org/10.1109/36.499748]
Becker F. 1987. The impact of spectral emissivity on the measurement of land surface temperature from a satellite. International Journal of Remote Sensing, 8(10): 1509-1522 [DOI: 10.1080/01431168708954793http://dx.doi.org/10.1080/01431168708954793]
Becker F and Li Z L. 1990a. Temperature-Independent Spectral Indices in Thermal Infrared Bands. Remote Sensing of Environment, 32(01): 17-33 [DOI: 10.1016/0034-4257(90)90095-4http://dx.doi.org/10.1016/0034-4257(90)90095-4]
Becker F and Li Z L. 1990. Towards a local split window method over land surfaces. International Journal of Remote Sensing, 11(3): 369-393 [DOI: 10.1080/01431169008955028http://dx.doi.org/10.1080/01431169008955028]
Borel C C. 1997. Iterative Retrieval of Surface Emissivity and T emperature for a Hyperspectral Sensor. In First JPL W orkshop on Remote Sensing of Land Surface Emissivity, Pasadena, CA, May 6-8, 1-5
Borel C C. 2008. Error Analysis for a T emperature and Emissivity Retrieval Algorithm for Hyperspectral Imaging Data. International Journal of Remote Sensing, 29(17-18): 5029-5045 [DOI: 10.1080/01431160802036540http://dx.doi.org/10.1080/01431160802036540]
Cao B, Guo M Z, Fan W J, Xu X R, Peng J J, Ren H Z, Du Y M, Li H, Bian Z J, Hu T, Xiao Q and Liu Q H. 2018. A New Directional Canopy Emissivity Model Based on Spectral Invariants. IEEE Transactions on Geoscience and Remote Sensing, 56(12): 6911-6926 [DOI: 10.1109/TGRS.2018.2845678http://dx.doi.org/10.1109/TGRS.2018.2845678]
Cao B, Liu Q H, Du Y M, Roujean J L, Gastellu-Etchegorry J P, Trigo I F, Zhan W F, Yu Y Y, Cheng J, Jacob F, Lagouarde J P, Bian Z J, Li H, Hu T and Xiao Q. 2019. A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives. Remote Sensing of Environment, 232: 111304 [DOI: 10.1016/j.rse.2019.111304http://dx.doi.org/10.1016/j.rse.2019.111304]
Cheng J, Liang S L, Yao Y J and Zhang X T. Estimating the Optimal Broadband Emissivity Spectral Range for Calculating Surface Longwave Net Radiation. IEEE Geoscience and Remote Sensing Letters, 10(2): 401-405 [DOI: 10.1109/LGRS.2012.2206367http://dx.doi.org/10.1109/LGRS.2012.2206367]
Coll C, Valor E, Galve J M, Mira M, Bisquert M, García-Santos V, Caselles E and Caselles V. 2012. Long-term accuracy assessment of land surface temperatures derived from the Advanced AlongTrack Scanning Radiometer. Remote Sensing of Environment, 116: 211-225 [DOI: 10.1016/j.rse.2010.01.027http://dx.doi.org/10.1016/j.rse.2010.01.027]
Coll C, Galve J M, Sanchez J M and Caselles V. 2010. Validation of landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing, 48(1): 547-555 [DOI: 10.1109/TGRS.2009.2024934http://dx.doi.org/10.1109/TGRS.2009.2024934]
Duan S B, Li Z L, Li H, Göttsche F M, Wu H, Zhao W, Leng P, Zhang X and Coll C. 2019. Validation of Collection 6 MODIS land surface temperature product using in situ measurements, Remote Sensing of Environment,225:16-29[10.1016/j.rse.2019.02.020]
Duan S B, Li Z L, Zhao W, Wu P H, Huang C, Han X J, Gao M F, Leng P and Shang G F. 2021. Validation of Landsat land surface temperature product in the conterminous United States using in situ measurements from SURFRAD, ARM, and NDBC sites, International Journal of Digital Earth, 14(5): 640-660 [DOI: 10.1080/17538947.2020.1862319http://dx.doi.org/10.1080/17538947.2020.1862319]
Gillespie A, Rokugawa S, Matsunaga T, Cothern J S, Hook S and Kahle A B. 1998. A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1113–1126 [DOI: 10.1109/36.700995http://dx.doi.org/10.1109/36.700995]
Guillevic P C, Biard J C, Hulley G C, Privette J L, Hook S J, Olioso A, Göttsche F M, Radocinski R, Román M O, Yu Y and Csiszar I. 2014. Validation of Land Surface Temperature products derived from the Visible Infrared Imaging Radiometer Suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sensing of Environment, 154: 19-37 [DOI: 10.1016/j.rse.2014.08.013http://dx.doi.org/10.1016/j.rse.2014.08.013]
Gutman G and Ignatov A. 1998. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 19(8): 1533-1543 [DOI: 10.1080/014311698215333http://dx.doi.org/10.1080/014311698215333]
Hulley G C, Hook S J, Abbott E, Malakar N, Islam T and Abrams M. 2015. The ASTER Global Emissivity Dataset (ASTER GED): mapping earth’s emissivity at 100 meter spatial scale. Geophysical Research Letters, 42(19): 7966-7976 [DOI: 10.1002/2015GL065564http://dx.doi.org/10.1002/2015GL065564]
Jiang G M and Liu R G. 2014. Retrieval of sea and land surface temperature from SVISSR/FY-2C/D/E measurements. IEEE Transactions on Geoscience and Remote Sensing, 52(10): 6132-6140 [DOI: 10.1109/TGRS.2013.2295260http://dx.doi.org/10.1109/TGRS.2013.2295260]
Jiang J X, Li H, Liu Q H, Wang H S, Du Y M, Cao B, Zhong B and Wu S L. 2015. Evaluation of land surface temperature retrieval from FY-3B/VIRR data in an arid area of northwestern China. Remote Sensing, 7(6): 7080-7104 [DOI: 10.3390/rs70607080http://dx.doi.org/10.3390/rs70607080]
Jiang J X, Liu Q H, Li H and Huang H G. 2011. Split-window method for land surface temperature estimation from FY-3A/VIRR data//Proceedings of 2011 IEEE International Geoscience and Remote Sensing Symposium. Vancouver: IEEE [DOI: 10.1109/IGARSS.2011.6048953http://dx.doi.org/10.1109/IGARSS.2011.6048953]
Jiménez-Muñoz J C and Sobrino J A. 2003. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research: Atmospheres, 108(D22): 4688 [DOI: 10.1029/2003JD003480http://dx.doi.org/10.1029/2003JD003480]
Jiménez-Muñoz J C and Sobrino J A. 2010. A single-channel algorithm for land-surface temperature retrieval from ASTER data. IEEE Geoscience and Remote Sensing Letters, 7(1): 176-179 [DOI: 10.1109/LGRS.2009.2029534http://dx.doi.org/10.1109/LGRS.2009.2029534]
Jiménez-Muñoz J C, Cristobal J, Sobrino J A, Soria G, Ninyerola M and Pons X. 2009. Revision of the single-channel algorithm for land surface temperature retrieval from landsat thermal-infrared data. IEEE Transactions on Geoscience and Remote Sensing, 47(1): 339-349 [DOI: 10.1109/TGRS.2008.2007125http://dx.doi.org/10.1109/TGRS.2008.2007125]
Kahle A B, Madura D P and Soha J M. 1980. Middle Infrared Multispectral Aircraft Scanner Data: Analysis for Geological Applications. Applied Optics, 19(14): 2279-90 [10.1364/AO.19.002279]
Kondratyev K Y. 1969. Radiation in the Atmosphere. International geophysics series, vol. 12, New York, NY. London: Academic Press
Li J, Li J L, Weisz E and Zhou D K. 2007. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances. Geophysical Research Letters, 34(16): L16812 [DOI: 10.1029/2007GL030543http://dx.doi.org/10.1029/2007GL030543]
Li Z L, Duan S B, Tang B H, Wu H, Ren H Z, Yan G J, Tang R L and Leng P. 2016. Review of methods for land surface temperature derived from thermal infrared remotely sensed data. Journal of Remote Sensing, 20(5): 899-920
李召良, 段四波, 唐伯惠, 吴骅, 任华忠, 阎广建, 唐荣林, 冷佩. 2016. 热红外地表温度遥感反演方法研究进展. 遥感学报, 20(5): 899-920 [DOI: 10.11834/jrs.20166192http://dx.doi.org/10.11834/jrs.20166192]
Li Z L, Petitcolin F and Zhang R H. 2000. A Physically Based Algorithm for Land Surface Emissivity Retrieval from Combined Mid-Infrared and Thermal Infrared Data. Science in China Series E: Technological Sciences, 43: 23–33 [10.1007/BF02916575]
Li Z L, Tang B H, Tang R H, Wu H, Duan S B, Leng P and Zhang R H. 2017. Theory and method of thermal infrared remote sensing inversion of surface temperature. Science Focus, 12(6): 57-59
李召良, 唐伯惠, 唐荣林, 吴骅, 段四波, 冷佩, 张仁华. 2017. 地表温度热红外遥感反演理论与方法. 科学观察, 12(6): 57-59[DOI: 10.15978/j.cnki.1673-5668.201706006http://dx.doi.org/10.15978/j.cnki.1673-5668.201706006]
Li Z L, Wu H, Wang N, Qiu S, Sobrino J A, Wan Z M, Tang B H and Yan G J. 2013. Land surface emissivity retrieval from satellite data, International Journal of Remote Sensing, 34(9-10): 3084-3127 [DOI: 10.1080/01431161.2012.716540http://dx.doi.org/10.1080/01431161.2012.716540]
Liu C, Li H, Du Y M, Cao B, Liu Q H, Meng X C and Hu Y J. 2017. Practical split-window algorithm for retrieving land surface temperature from Himawari 8 AHI data. Journal of Remote Sensing, 21(5): 702-714
刘超, 历华, 杜永明, 曹彪, 柳钦火, 孟翔晨, 胡友健. 2017. Himawari 8 AHI数据地表温度反演的实用劈窗算法. 遥感学报, 21(5): 702-714 [DOI: 10.11834/jrs.20176492http://dx.doi.org/10.11834/jrs.20176492]
Liu R G and Jiang G M. 2014. Retrieval of Sea and Land Surface Temperature From SVISSR/FY-2C/D/E Measurements. IEEE Transactions on Geoscience and Remote Sensing, 52(10): 6132-6140 [DOI: 10.1109/TGRS.2013.2295260http://dx.doi.org/10.1109/TGRS.2013.2295260]
Ma J W, Han X Z, Ha S B G, Wang Z G, Yan S X and Dai Q. 2004. Remote sensing new model for monitoring the East Asian migratory locust infections based on its breeding circle. Journal of Remote Sensing, 8(4): 370-377
马建文, 韩秀珍, 哈斯巴干, 王志刚, 燕守勋, 戴芹. 2004. 基于东亚飞蝗生育周期的遥感蝗灾监测新模式. 遥感学报, 8(4): 370-377 [DOI: 10.11834/jrs.20040412http://dx.doi.org/10.11834/jrs.20040412]
Mao K B, Qin Z, Shi J and Gong P. 2005. A practical split‐window algorithm for retrieving land‐surface temperature from MODIS data. International Journal of Remote Sensing, 26(15): 3181-3204 [DOI: 10.1080/01431160500044713http://dx.doi.org/10.1080/01431160500044713]
McMillin L M. 1975. Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, 80(36): 5113-5117 [DOI: 10.1029/JC080i036p05113http://dx.doi.org/10.1029/JC080i036p05113]
Meng X C, Li H, Du Y M, Cao B, Liu Q H and Li B. 2018. Retrieval and validation of the land surface temperature derived from Landsat 8 data: a case study of the Heihe River Basin. Journal of Remote Sensing, 22(5): 857-871
孟翔晨, 历华, 杜永明, 曹彪, 柳钦火, 李彬. 2018. Landsat 8地表温度反演及验证——以黑河流域为例. 遥感学报, 22(5): 857-871 [DOI: 10.11834/jrs.20187411http://dx.doi.org/10.11834/jrs.20187411]
Meng X C, Li H, Du Y M, Cao B, Liu Q H, Sun L and Zhu J S. 2016. Estimating land surface emissivity from ASTER GED products. Journal of Remote Sensing, 20(3): 382-396
孟翔晨, 历华, 杜永明, 曹彪, 柳钦火, 孙林, 朱金山. 2016. 基于ASTER GED产品的地表发射率估算. 遥感学报, 20(3): 382-396 [DOI: 10.11834/jrs.20165230http://dx.doi.org/10.11834/jrs.20165230]
Price J C. 1984. Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research-Atmospheres, 89(D5): 7231-7237 [DOI: 10.1029/JD089iD05p07231http://dx.doi.org/10.1029/JD089iD05p07231]
Qin Z H, Zhang M H, Karnieli A and Berliner P. 2001. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data. Acta Geographica Sinica, 56(4): 456-466
覃志豪, Zhang M H, Karnieli A, Berliner P. 2001. 用陆地卫星TM6数据演算地表温度的单窗算法. 地理学报, 56(4): 456-466 [DOI: 10.11821/xb200104009http://dx.doi.org/10.11821/xb200104009]
Snyder W C, Wan Z, Zhang Y and Feng Y Z. 1998. Classification-based emissivity for land surface temperature measurement from space. International Journal of Remote Sensing, 19(14): 2753-2774 [DOI: 10.1080/014311698214497http://dx.doi.org/10.1080/014311698214497]
Sobrino J A, Jiménez-Muñoz J C and Paolini L. 2004a. Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4): 434-440 [DOI: 10.1016/j.rse.2004.02.003http://dx.doi.org/10.1016/j.rse.2004.02.003]
Sobrino J A, Li Z L, Stoll M P and Becker F. 1996. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. International Journal of Remote Sensing, 17(11): 2089-2114 [DOI: 10.1080/01431169608948760http://dx.doi.org/10.1080/01431169608948760]
Sobrino J A and Raissouni N. 2000.Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing, 21(2): 353-366 [DOI: 10.1080/014311600210876http://dx.doi.org/10.1080/014311600210876]
Song T, Duan Z, Liu J Z, Shi J Z, Yan F, Sheng S J, Huang J and Wu W. 2015. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite. Journal of Remote Sensing, 19(3): 451-464
宋挺, 段峥, 刘军志, 石浚哲, 严飞, 盛世杰, 黄君, 吴蔚. 2015. Landsat 8数据地表温度反演算法对比. 遥感学报, 19(3): 451-464 [DOI: 10.11834/jrs.20154180http://dx.doi.org/10.11834/jrs.20154180]
Sun D L and Pinker R T. 2003. Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES8). Journal of Geophysical Research-Atmospheres, 108(D11): 4326 [DOI: 10.1029/2002JD002422http://dx.doi.org/10.1029/2002JD002422]
Sun D L and Pinker R T. 2005. Implementation of GOES-based land surface temperature diurnal cycle to AVHRR. International Journal of Remote Sensing, 26(18): 3975-3984 [DOI: 10.1080/01431160500117634http://dx.doi.org/10.1080/01431160500117634]
Sun D L and Pinker R T. 2007. Retrieval of surface temperature from the MSG-SEVIRI observations: part I. Methodology. International Journal of Remote Sensing, 28(23): 5255-5272 [DOI: 10.1080/01431160701253246http://dx.doi.org/10.1080/01431160701253246]
Tang B H, Bi Y Y, Li Z L and Xia J. 2008. Generalized split-window algorithm for estimate of land surface temperature from chinese geostationary FengYun meteorological satellite (FY-2C) data. Sensors, 8(2): 933-951 [DOI: 10.3390/s8020933http://dx.doi.org/10.3390/s8020933]
Tang K, Zhu H C, Cheng Y and Zhang L. 2020. Destriping and evaluating FY-3D MERSI-2 data with the moment matching method based on synchronous reference image. Journal of Applied Remote Sensing, 14(4): 046517. [DOI: 10.1117/1.jrs.14.046517http://dx.doi.org/10.1117/1.jrs.14.046517]
Valor E and Caselles V. 1996. Mapping land surface emissivity from NDVI: application to European, African, and South American areas. Remote Sensing of Environment, 57(3): 167-184 [DOI: 10.1016/0034-4257(96)00039-9http://dx.doi.org/10.1016/0034-4257(96)00039-9]
Wan Z M and Dozier J. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34(4): 892-905 [DOI: 10.1109/36.508406http://dx.doi.org/10.1109/36.508406]
Wan Z M and Li Z L. 1997. A Physics-Based Algorithm for Retrieving Land-Surface Emissivity and T emperature from EOS/MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 980-996 [DOI: 10.1109/36.602541http://dx.doi.org/10.1109/36.602541]
Wang N, Wu H, Nerry F, Li C R and Li Z L. 2011. Temperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint. IEEE Transactions on Geoscience and Remote Sensing, 49(4): 1291-1303 [DOI: 10.1109/TGRS.2010.2062527http://dx.doi.org/10.1109/TGRS.2010.2062527]
Wang C G, Duan S B, Zhang X Y, Wu H, Gao M F and Leng P. 2019a. An alternative split-window algorithm for retrieving land surface temperature from Visible Infrared Imaging Radiometer Suite data. International Journal of Remote Sensing, 40(5/6): 1640-1654 [DOI: 10.1080/01431161.2018.1492180http://dx.doi.org/10.1080/01431161.2018.1492180]
Wang H, Mao K B, Mu F Y, Shi J C, Yang J, Li Z L and Qin Z H. 2019b. A split window algorithm for retrieving land surface temperature from FY-3D MERSI-2 data. Remote Sensing, 11(18): 2083 [DOI: 10.3390/rs11182083http://dx.doi.org/10.3390/rs11182083]
Wang J K, Wang K C and Wang P C. 2007. Urban heat (or cool) island over Beijing from MODIS land surface temperature. Journal of Remote Sensing, 11(3): 330-339
王建凯, 王开存, 王普才. 2007. 基于MODIS地表温度产品的北京城市热岛(冷岛)强度分析. 遥感学报, 11(3): 330-339 [DOI: 10.11834/jrs.20070346http://dx.doi.org/10.11834/jrs.20070346]
Wang K C and Liang S L. 2009. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites, Remote Sensing of Environment, 113(7): 1556-1565 [DOI: 10.1016/j.rse.2009.03.009http://dx.doi.org/10.1016/j.rse.2009.03.009]
Wu W Y, Jin C, Pang Y W, Zhao L J, Song Y, Hu T G, Zhang D R andXu J F. 2019. Distribution characteristics of surface thermal environment in Zhejiang province based on thermal infrared remote sensing. Journal of Remote Sensing, 23(4): 796-808
吴文渊, 金城, 庞毓雯, 赵丽佳, 宋瑜, 胡潭高, 张登荣, 徐俊锋. 2019. 热红外遥感浙江地表热环境分布研究. 遥感学报, 23(4): 796-808 [DOI: 10.11834/jrs.20197339http://dx.doi.org/10.11834/jrs.20197339]
Xu N, Wu R H and Hu X Q. 2019. Ground Application System Engineering of Fengyun-3 (Batch 02) Meteorological Satellite D Guidelines for the use of satellite medium resolution spectral imager data. National satellite meteorological center, [2021-04-02]. http://satellite.nsmc.org.cn/PortalSite/StaticContent/DocumentDownload.aspx?TypeID=2 (http://satellite.nsmc.org.cn/PortalSite/StaticContent/DocumentDownload.aspx?TypeID=2(
徐娜, 吴荣华, 胡秀清. 2019. 风云三号(02 批)气象卫星地面应用系统工程D星中分辨率光谱成像仪数据使用指南. 国家卫星气象中心, [2021-04-02]. http://satellite.nsmc.org.cn/PortalSite/StaticContent/DocumentDowhttp://satellite.nsmc.org.cn/PortalSite/StaticContent/DocumentDownload.aspx?TypeID=2
Yang J J, Duan S B, Zhang X Y, Wu P H, Huang C, Leng P and Gao M F. 2020. Evaluation of Seven Atmospheric Profiles from Reanalysis and Satellite-Derived Products: Implication for Single-Channel Land Surface Temperature Retrieval. Remote Sensing, 12: 791 [DOI: 10.3390/rs12050791http://dx.doi.org/10.3390/rs12050791]
Yang Y K, Li H, Sun L, Du Y M, Cao B, Liu Q H and Zhu J S. 2019. Land surface temperature and emissivity separation from GF-5 visual and infrared multispectral imager data. Journal of Remote Sensing, 23(6): 1132-1146
杨以坤, 历华, 孙林, 杜永明, 曹彪, 柳钦火, 朱金山. 2019. 高分五号全谱段光谱成像仪地表温度与发射率反演. 遥感学报, 23(6): 1132-1146 [DOI: 10.11834/jrs.20198053http://dx.doi.org/10.11834/jrs.20198053]
Yu X L, Guo X L and Wu Z C. 2014. Land surface temperature retrieval from landsat 8 TIRS—comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10): 9829-9852 [DOI: 10.3390/rs6109829http://dx.doi.org/10.3390/rs6109829]
Zhan C, Tang B H and Li Z L. 2018. Retrieval and validation of land surface temperature for atmospheres with air temperature inversion. Journal of Remote Sensing, 22(1): 28-37
战川, 唐伯惠, 李召良. 2018. 近地表大气逆温条件下的地表温度遥感反演与验证. 遥感学报, 22(1): 28-37 [DOI: 10.11834/jrs.20187043http://dx.doi.org/10.11834/jrs.20187043]
Zhang S T, Duan S B, Li Z L, Huang C, Wu H, Han X J, Leng P and Gao M F. 2019. Improvement of Split-Window Algorithm for Land Surface Temperature Retrieval from Sentinel-3A SLSTR Data Over Barren Surfaces Using ASTER GED Product. Remote Sensing, 11: 3025 [DOI: 10.3390/rs11243025http://dx.doi.org/10.3390/rs11243025]
Zhang Y Z, Duan S B, Jiang X G, Wu H, Jiang Y Z, Liu Z X and Huang C. 2017. Complement analysis for the wavelet transform method for separating temperature and emissivity. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3965-3968 [DOI: 10.1109/IGARSS.2017.8127868http://dx.doi.org/10.1109/IGARSS.2017.8127868]
Zhang Y, Yu T, Gu X F, Zhang Y X, Chen L F, Yu S S, Zhang W J and Li X W. 2006. Land surface temperature retrieval from CBERS-02 IRMSS thermal infrared data and its applications in quantitative analysis of urban heat island effect. Journal of Remote Sensing, 10(5): 789-797
张勇, 余涛, 顾行发, 张玉香, 陈良富, 余姗姗, 张文君, 李小文. 2006. CBERS-02 IRMSS热红外数据地表温度反演及其在城市热岛效应定量化分析中的应用. 遥感学报, 10(5): 789-797 [DOI: 10.11834/jrs.200605117http://dx.doi.org/10.11834/jrs.200605117]
Zhao Y S. 2013. Principle and Method of Remote Sensing Application Analysis. 2nd ed. Beijing: Science Press: 94-119
赵英时. 2013. 遥感应用分析原理与方法. 2版. 北京: 科学出版社: 94-119
Zheng W, Chen J, Yan H, Liu C and Tang S H. 2020. Global fire monitoring products of FY-3D/MERSI-II and their applications. Journal of Remote Sensing, 24(5): 521-530
郑伟, 陈洁, 闫华, 刘诚, 唐世浩. 2020. FY-3D/MERSI-II全球火点监测产品及其应用. 遥感学报, 24(5): 521-530 [DOI: 10.11834/jrs.20209177http://dx.doi.org/10.11834/jrs.20209177]
Zhu A J, Hu X Q, Lin M Y, Jia S Z and Ma Y. 2018. Global data acquisition methods and data distribution for FY-3D meteorological satellite. Journal of Marine Meteorology, 38(3): 1-10
朱爱军, 胡秀清, 林曼筠, 贾树泽, 马友. 2018. 风云三号D气象卫星全球数据获取方法及数据分发. 海洋气象学报, 38(3): 1-10 [DOI: 10.19513/j.cnki.issn2096-3599.2018.03.001http://dx.doi.org/10.19513/j.cnki.issn2096-3599.2018.03.001]
相关文章
相关作者
相关机构