Models and Methods | Views : 0 下载量: 846 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • An improved method for estimating clumping index in mixed coniferous and broadleaved forests using BRDF shape of surface ecotype as constraints

    • New progress has been made in the study of vegetation canopy structure parameters. Researchers have proposed a method for dynamically selecting the end element CI components of mixed forest pixels to improve the accuracy of estimating vegetation aggregation index in coniferous and broad-leaved mixed forests, in response to the accuracy issues of existing methods for estimating CI products on satellite. This method utilizes the dual constraints of the International Geosphere Biosphere Programme's surface types and the surface anisotropic flatness index that describes the bidirectional reflectance distribution function, combined with high-resolution land cover classification data to determine the area ratio of end elements in pixels, in order to estimate the clustering index of MODIS coniferous and broad-leaved mixed forest pixels. The research results indicate that this method can significantly improve the estimation accuracy of pixel CI values in mixed coniferous and broad-leaved forests, providing a feasible solution for the production and accuracy improvement of CI products in mixed coniferous and broad-leaved forests. This research achievement is of great significance for global carbon, water cycle research, and vegetation ecology research.
    • Vol. 28, Issue 4, Pages: 995-1009(2024)   

      Received:10 August 2021

      Published:07 April 2024

    • DOI: 10.11834/jrs.20211522     

    移动端阅览

  • Xie R,Jiao Z T,Dong Y D,Cui L,Yin S Y,Zhang X N,Chang Y X and Guo J. 2024. An improved method for estimating clumping index in mixed coniferous and broadleaved forests using BRDF shape of surface ecotype as constraints. National Remote Sensing Bulletin, 28(4):995-1009 DOI: 10.11834/jrs.20211522.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Rui XIE 北京师范大学地理科学学部遥感科学与工程研究院;北京师范大学遥感科学国家重点实验室
ziti JIAO 北京师范大学地理科学学部遥感科学与工程研究院;北京师范大学遥感科学国家重点实验室
yadong DONG 北京师范大学遥感科学国家重点实验室;中国科学院空天信息创新研究院
Lei CUI 北京师范大学地理科学学部遥感科学与工程研究院;北京师范大学遥感科学国家重点实验室
Siyang YIN 北京师范大学地理科学学部遥感科学与工程研究院;北京师范大学遥感科学国家重点实验室
Xiaoning ZHANG 北京师范大学地理科学学部遥感科学与工程研究院;北京师范大学遥感科学国家重点实验室
Yaxuan CHANG 北京师范大学地理科学学部遥感科学与工程研究院;北京师范大学遥感科学国家重点实验室
jing GUO 北京师范大学地理科学学部遥感科学与工程研究院;北京师范大学遥感科学国家重点实验室

相关机构

Skate Key Laboratory of Remote Sensing Science
College of Remote Sensing and Engineering, Faculty of Geographical Science, Beijing Normal University
State Key Laboratory of Remote Sensing Science, Beijing Normal University
College of Urban and Environmental Sciences, Tianjin Normal University
College of Surveying and Geo-Informatics, Tongji University
0