Models and Methods | Views : 0 下载量: 2821 CSCD: 5
  • Export

  • Share

  • Collection

  • Album

    • CBAM UNet+++: Attention mechanism to guide change detection studies of full-scale connected networks

    • In response to the limitations of ordinary skip connections in remote sensing image change detection and the insufficient feature extraction ability of encoders, the research team proposes a new CBAM UNet++network structure. This network combines the change detection requirements of high-resolution remote sensing images and effectively enhances the network's ability to capture full-scale change information and the encoder's ability to learn salient features by introducing a coupled attention mechanism CBAM. In the experiment, the research team validated using two high-resolution remote sensing image change detection datasets with different types of changes. The results showed that CBAM UNet++achieved the highest accuracy on the LEBEDEV multi terrain change dataset, with F1 and OA values reaching 88.9% and 97.3%, respectively. On the LEVIR-CD building change dataset, the second highest accuracy was also achieved, with F1 and OA values of 86.7% and 96.8%, respectively. These achievements demonstrate the superior performance of CBAM UNet+++in remote sensing image change detection. In addition, the study also found that CBAM UNet+++can selectively obtain deep semantic information, and its qualitative results are superior to other benchmark networks. This discovery provides new ideas and methods for the field of remote sensing image change detection, and lays the foundation for subsequent research.
    • Vol. 28, Issue 4, Pages: 1052-1065(2024)   

      Received:10 August 2021

      Published:07 April 2024

    • DOI: 10.11834/jrs.20221548     

    移动端阅览

  • Liu Y,He X,Li D Y,Yue H and Wei J L. 2024. CBAM UNet+++: Attention mechanism to guide change detection studies of full-scale connected networks. National Remote Sensing Bulletin, 28(4):1052-1065 DOI: 10.11834/jrs.20221548.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Ying Liu 西安科技大学 测绘科学与技术学院
Xue He 西安科技大学 测绘科学与技术学院
Danyang Li 中国地质大学 国家地理信息系统工程技术研究中心
Hui Yue 西安科技大学 测绘科学与技术学院
Jiali Wei 西安科技大学 测绘科学与技术学院
SHAO Pan 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
GAO Zi’ang 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
GAO Ziang 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院

相关机构

National Geographic Information System Engineering Technology Research Center, China University of Geosciences
Hubei Key Laboratory of Intelligent Vision Monitoring for Hydroelectric Engineering, China Three Gorges University
College of Computer and Information Technology, China Three Gores University
State Key Laboratory of Integrated Services Networks, Xidian University
School of Geography and Ocean Science, Nanjing University
0