Models and Methods | Views : 0 下载量: 1228 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Lightweight model for On-Orbit optical object detection

    • The research team proposed a deep separable convolutional neural network model for target recognition on micro nano satellite in orbit computing platforms. This model reduces the depth and complexity of the overall network structure by improving the Yolov4 network structure, and uses separable convolution structures to reduce the number of model parameters. Meanwhile, by merging the convolutional layer with the Batch Normalization layer, the forward inference speed is further accelerated. In addition, the research team also drew inspiration from the Focal loss function and improved the loss function of the object detection network to alleviate the problem of imbalanced foreground and background sample ratios. Compared with the original Yolov4 network model, the new model reduces the number of parameters by about 7 times and FLOPs by about 30 times while ensuring a recognition accuracy of 94.09%. In addition, the algorithm performance of the new model was further validated through comparative experiments with cutting-edge network models such as Yolo series, SSD, MobileNet, CenterNet, etc. This research achievement provides theoretical support for achieving in orbit target recognition and filtering useless data, which helps to promote the technological progress and application expansion of micro nano satellite in orbit computing platforms.
    • Vol. 28, Issue 4, Pages: 1041-1051(2024)   

      Received:20 August 2021

      Published:07 April 2024

    • DOI: 10.11834/jrs.20221556     

    移动端阅览

  • Lyu X N,Xia Y L,Zhao J S and Qiao P. 2024. Lightweight model for On-Orbit optical object detection. National Remote Sensing Bulletin, 28(4):1041-1051 DOI: 10.11834/jrs.20221556.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

Xiaoning LV 中国科学院软件研究所 天基综合信息系统重点实验室
Yuli XIA 中国科学院软件研究所 天基综合信息系统重点实验室
Junsuo ZHAO 中国科学院软件研究所 天基综合信息系统重点实验室;中国科学院大学
Peng QIAO 中国科学院软件研究所 天基综合信息系统重点实验室
YANG Yunjie 西南交通大学 地球科学与工程学院
ZHANG Rui 西南交通大学 地球科学与工程学院
JIANG Han 西南交通大学 地球科学与工程学院
ZHANG Bo 西南交通大学 地球科学与工程学院

相关机构

Faculty of Geosciences and Engineering, Southwest Jiaotong University
Chengdu Institute of Plateau Meteorology, China Meteorological Administration
School of Environmental and Geographical Sciences, Shanghai Normal University
Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station
Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences
0