Fine classification of vegetable crops covered with different planting facilities using UAV Hyperspectral image
- Pages: 1-14(2022)
DOI: 10.11834/jrs.20222054
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
胡顺石,杨斌,黄英,岑奕,戚文超.XXXX.不同种植设施背景蔬菜作物无人机高光谱精细分类.遥感学报,XX(XX): 1-14
HU Shunshi,YANG Bin,HUANG Ying,CEN Yi,QI Wenchao. XXXX. Fine classification of vegetable crops covered with different planting facilities using UAV Hyperspectral image. National Remote Sensing Bulletin, XX(XX):1-14
我国蔬菜产业规模大、产值高,是促进农民增收和农村农业经济发展的支柱产业。快速准确地获取区域尺度蔬菜种植结构信息对于农业现代化、自动化和精细化等具有重要意义。无人机高光谱遥感技术具有快速机动灵活和“图谱合一”的优势,在作物精细分类中具有广泛应用前景。然而蔬菜作物种植规模差异大、农业景观破碎度高,同时还受地膜、大棚和防鸟网覆盖等影响,无人机高光谱图像易产生严重的混合光谱效应,给蔬菜作物精细分类带来了极大的挑战。针对此问题,本研究以湖南省农科院高桥科研基地蔬菜种植区为例,获取无人机高光谱图像,探索采用支持向量机和深度学习方法对不同蔬菜作物进行精细分类。研究结果表明:基于无人机高光谱遥感数据,可以实现不同覆盖背景下的蔬菜作物精细分类;两大分类方法的平均总体精度分别为78.03%和90.75%,平均Kappa系数分别为0.7359和0.8887,相较于支持向量机方法,基于深度学习的分类方法获得的精细分类效果更加理想,三维卷积神经网络和引入注意力机制的卷积神经网络可以有效提取图像中的光谱-空间特征信息,在蔬菜作物精细分类中体现出更好的分类效果;蔬菜作物在大尺度地块上空间纹理特征明显,而在小地块尺度上差异较大,宜采用不同深度学习方法对其进行精细分类;不同覆盖背景对蔬菜作物产生混合光谱效应,对作物精细分类效果影响显著。
Objective With large scale and high output value, China's vegetable industry is a pillar industry to promote the increase of farmers' income and the development of rural agricultural economy. Rapidly and accurately obtaining vegetable crops planting structure information is of great significance for agricultural modernization, automation and precision. With the advantages of fast mobility, flexibility and image-spectrum merging, Unarmed Aerial Vehicle (UAV) hyperspectral remote sensing has wide prospects in crops fine classification. However, there are great variations in vegetable crop planting scales and modes and the fragmentation of agricultural landscape is high in China, and the vegetable crops are also affected by the coverage of plastic film, greenhouse and bird proof net, which easily produced the mixed spectral effect in UAV Hyperspectral images and also brings big challenges to the fine classification of vegetable crops.Method Hyperspectral images of Gaoqiao scientific research base of Hunan Academy of Agricultural Sciences were obtained by UAV. According to the field survey, the area contains 14 ground feature categories, including eggplant, towel gourd, rice, pepper, tomato, and etc. Due to low requirements for data and excellent generalization ability, Support Vector Machine (SVM) is widely used in crops classification. And deep convolution neural network structure can automatically learn the abstract features of images and obtain higher-level and richer semantic information of samples, so as to better complete the classification task. For these reasons, SVM and Deep Learning (DL) methods were applied to the classification of vegetable crops in this study. Different from many hyperspectral classification verification experiments that randomly select training sets, training samples and test samples were manually selected in this study to reduce the spatial correlation between training sets and test sets. And the performance of different classification methods was evaluated using confusion matrix.Result The results showed that using hyperspectral images obtained by UAV, the average overall accuracy of vegetable crops classification using SVM and DL methods is 78.03% and 90.75% respectively, and the average Kappa coefficients is 0.7359 and 0.8887 respectively. Compared with the SVM methods, the fine classification effects obtained by the DL methods are much more ideal, which is because the three-dimensional convolutional neural network and the convolutional neural network with attention mechanism can effectively extract the spectral spatial feature information in the image, thus shows a better performance in the classification of vegetable crops. The spatial texture characteristics of vegetable crops are obvious on large-scale plots, while they are various on small-scale plots, thus it is appropriate to use different DL methods for classification of vegetable crops on different scale plots.Conclusion In this study, vegetable crops under different planting facilities were classified using UAV hyperspectral images. Under the influence of complex background such as plastic film, bird net and greenhouse, good performance was still achieved using SVM and Deep Learning (DL) methods, which can provide technology support for the modernization, automation and refinement of regional vegetable crop management.
精细分类蔬菜作物无人机高光谱大棚地膜
fine classificationvegetable cropsUnmanned Aerial Vehicle (UAV)Hyperspectralgreenhousesmulch film
Aguilar M A, Vallario A, Aguilar F J, Lorca A G and Parente C. 2015. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain. Remote Sensing, 7(6):7378-7401[doi:10.3390/rs70607378http://dx.doi.org/10.3390/rs70607378].
Asgarian A, Soffianian A and Pourmanafi S. 2016. Crop type mapping in a highly fragmented and heterogeneous agricultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery. Computers and Electronics in Agriculture, 127:531-540[doi:10.1016/j.compag.2016.07.019http://dx.doi.org/10.1016/j.compag.2016.07.019].
Camps-Valls G and Bruzzone L. 2005. Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6):1351-1362[doi:10.1109/TGRS.2005.846154http://dx.doi.org/10.1109/TGRS.2005.846154].
Chen Z X, Ren J Q, Tang H j, Shi Y, Leng P, Liu J, Wang L M, Wu W B, Yao Y M and Hasiyuya. 2016. Progress and perspectives on agricultural remote sensing research and applications in China. Journal of Remote Sensing, 20(05):748-767
陈仲新, 任建强, 唐华俊, 史云, 冷佩, 刘佳, 王利民, 吴文斌, 姚艳敏, 哈斯图亚. 2016. 农业遥感研究应用进展与展望. 遥感学报, 20(05):748-767[doi:10.11834/jrs.20166214http://dx.doi.org/10.11834/jrs.20166214]
Congalton R G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1):35-46[doi:10.1016/0034-4257(91)90048-Bhttp://dx.doi.org/10.1016/0034-4257(91)90048-B].
Han W T, Li G, Yuan M C, Zhang L Y and Shi Z Q. 2017. Extraction Method of Maize Planting Information Based on UAV Remote Sensing Techonology. Transactions of the Chinese Society for Agricultural Machinery, 48(01):139-147
韩文霆, 李广, 苑梦婵, 张立元, 师志强. 2017. 基于无人机遥感技术的玉米种植信息提取方法研究. 农业机械学报, 48(01):139-147[doi:10.6041/j.issn.1000-1298.2017.01.018http://dx.doi.org/10.6041/j.issn.1000-1298.2017.01.018]
Du P J, Xia J S, Xue Z H, Tan K, Su H J and Bao R. 2016. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20(02):236-256
杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊. 2016. 高光谱遥感影像分类研究进展. 遥感学报, 20(02):236-256[doi:10.11834/jrs.20165022http://dx.doi.org/10.11834/jrs.20165022]
Feng Q L, Yang J Y, Liu Y M, Ou C, Zhu D H, Niu B W, Liu J T and Li B G. 2020. Multi-Temporal Unmanned Aerial Vehicle Remote Sensing for Vegetable Mapping Using an Attention-Based Recurrent Convolutional Neural Network. Remote Sensing, 12(10):1668[doi:10.3390/rs12101668].
Hasituya and Chen Z. 2017. Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data. Remote Sensing, 9(6):557[doi:10.3390/rs9060557].
Ji S, Xu W, Yang M and Yu K. 2013. 3D Convolutional Neural Networks for Human Action Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(1):221-231[doi:10.1109/TPAMI.2012.59http://dx.doi.org/10.1109/TPAMI.2012.59].
Jiménez-Lao R, Aguilar F J, Nemmaoui A and Aguilar M A. 2020. Remote Sensing of Agricultural Greenhouses and Plastic-Mulched Farmland: An Analysis of Worldwide Research. Remote Sensing, 12(16):2649[doi:10.3390/rs12162649].
Jolliffe I T and Cadima J. 2016. Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065):20150202[doi:10.1098/rsta.2015.0202].
Kang X, Li S, Fang L, Li M and Benediktsson J A. 2015. Extended Random Walker-Based Classification of Hyperspectral Images. IEEE Transactions on Geoscience and Remote Sensing, 53(1):144-153[doi:10.1109/TGRS.2014.2319373http://dx.doi.org/10.1109/TGRS.2014.2319373].
Li D R and Li M. 2014. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomatics and Information Science of Wuhan University, 39(05):505-513+540
李德仁, 李明. 2014. 无人机遥感系统的研究进展与应用前景. 武汉大学学报(信息科学版), 39(05):505-513+540[doi:10.13203/j.whugis20140045http://dx.doi.org/10.13203/j.whugis20140045]
Li M, Huang Y Q, Li X M, Peng D X and Xie J X. 2018. Extraction of rice planting information based on remote sensing image from UAV. Transactions of the Chinese Society of Agricultural Engineering, 34(04):108-114
李明, 黄愉淇, 李绪孟, 彭冬星, 谢景鑫. 2018. 基于无人机遥感影像的水稻种植信息提取. 农业工程学报, 34(04):108-114[doi:10.11975/j.issn.1002-6819.2018.04.013http://dx.doi.org/10.11975/j.issn.1002-6819.2018.04.013]
Li S G and Wang J J. 2018. Current situation and countermeasures of vegetable industry development in China. China Vegetables,(06):1-4
李斯更, 王娟娟. 2018. 我国蔬菜产业发展现状及对策措施. 中国蔬菜,(06):1-4
Li Y, Zhang H K and Shen Q. 2017. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sensing, 9(1):67[doi:10.3390/rs9010067].
Li Z M, Ren Y F and Zhang X Y. 2018. Development and trend of vegetable industry in china since reform and opening-up. Chinese Journal of Agricultural Resources and Regional Planning, 39(12):13-20
李哲敏, 任育锋, 张小允. 2018. 改革开放以来中国蔬菜产业发展及趋势. 中国农业资源与区划, 39(12):13-20[doi:10.7621/cjarrp.1005-9121.20181203http://dx.doi.org/10.7621/cjarrp.1005-9121.20181203]
Liao X H, Xiao Q and Zhang H. 2019. UAV remote sensing: Popularization and expand application development trend. Journal of Remote Sensing, 23(06):1046-1052
廖小罕, 肖青, 张颢. 2019. 无人机遥感:大众化与拓展应用发展趋势. 遥感学报, 23(06):1046-1052[doi:10.11834/jrs.20199422http://dx.doi.org/10.11834/jrs.20199422]
Lu B, Dao P D, Liu J G, He Y H and Shang J L. 2020. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sensing, 12(16):2659[doi:10.3390/rs12162659].
Mdrafi R, Du Q, Gurbuz A C, Tang B, Ma L and Younan N H. 2020. Attention-Based Domain Adaptation Using Residual Network for Hyperspectral Image Classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:6424-6433[doi:10.1109/JSTARS.2020.3035382http://dx.doi.org/10.1109/JSTARS.2020.3035382].
Moola W S, Bijker W, Belgiu M and Li M. 2021. Vegetable mapping using fuzzy classification of Dynamic Time Warping distances from time series of Sentinel-1A images. International Journal of Applied Earth Observation and Geoinformation, 102:102405[doi:10.1016/j.jag.2021.102405].
Nemmaoui A, Aguilar M A, Aguilar F J, Novelli A and García Lorca A. 2018. Greenhouse Crop Identification from Multi-Temporal Multi-Sensor Satellite Imagery Using Object-Based Approach: A Case Study from
Tong Q X, Zhang B and Zhang L F. 2016. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(05):689-707
童庆禧, 张兵, 张立福. 2016. 中国高光谱遥感的前沿进展. 遥感学报, 20(05):689-707[doi:10.11834/jrs.20166264http://dx.doi.org/10.11834/jrs.20166264]
Tong Q X, Zhang B and Zheng L F. 2006. Hyperspectral remote sensing--Principle, Technology and Application. Beijing:Higher Education Press:83-86
童庆禧, 张兵, 郑兰芬.2006. 高光谱遥感——原理、技术与应用.北京:高等教育出版社:83-86
Torres-Sánchez J, Peña J M, De Castro A I and López-Granados F. 2014. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture, 103:104-113[doi:10.1016/j.compag.2014.02.009http://dx.doi.org/10.1016/j.compag.2014.02.009].
Wei L F, Yu M, Zhong Y F, Zhao J, Liang Y J and Hu X. 2019. Spatial–Spectral Fusion Based on Conditional Random Fields for the Fine Classification of Crops in UAV-Borne Hyperspectral Remote Sensing Imagery. Remote Sensing, 11(7):780[doi:10.3390/rs11070780].
Weiss M, Jacob F and Duveiller G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236:111402[doi:10.1016/j.rse.2019.111402].
Xiao L, Xianjin H, Taiyang Z, Yuntai Z and Yi L. 2013. A Review of Farmland Fragmentation in China. Journal of Resources and Ecology, 4(4):344-352, 349[doi:10.5814/j.issn.1674-764x.2013.04.007].
Wu J Y, Liu X L, Bo Y C, Shi Z T and Fu Z. 2019. Plastic greenhouse recognition based on GF-2 data and multi-texture features. Transactions of the Chinese Society of Agricultural Engineering, 35(12):173-183
吴锦玉, 刘晓龙, 柏延臣, 史正涛, 付卓. 2019. 基于GF-2数据结合多纹理特征的塑料大棚识别. 农业工程学报, 35(12):173-183[doi:10.11975/j.issn.1002-6819.2019.12.021http://dx.doi.org/10.11975/j.issn.1002-6819.2019.12.021]
Xue Z H, Du P J, Li J and Su H J. 2017. Sparse graph regularization for robust crop mapping using hyperspectral remotely sensed imagery with very few in situ data. ISPRS Journal of Photogrammetry and Remote Sensing, 124:1-15[doi:10.1016/j.isprsjprs.2016.12.003http://dx.doi.org/10.1016/j.isprsjprs.2016.12.003].
Ye Z, Bai L and He M Y. 2021. Review of spatial-spectral feature extraction for hyperspectral image. Journal of Image and Graphics, 26(08):1737-1763
叶珍, 白璘, 何明一. 2021. 高光谱图像空谱特征提取综述. 中国图象图形学报, 26(08):1737-1763[doi:10.11834/jig.210198http://dx.doi.org/10.11834/jig.210198]
Zhang Z H. 2017a. Countermeasures for transformation and upgrading of vegetable industry in China (I). Journal of Chinese Agricultural Mechanization, 38(08):96-106
张真和. 2017a. 中国蔬菜产业转型升级对策探讨(上). 中国农机化学报, 38(08):96-106[doi:10.13733/j.jcam.issn.2095-5553.2017.08.019http://dx.doi.org/10.13733/j.jcam.issn.2095-5553.2017.08.019]
Zhang Z H. 2017b. Countermeasures for transformation and upgrading of vegetable industry in China (II). Journal of Chinese Agricultural Mechanization, 38(09):88-94
张真和. 2017b. 中国蔬菜产业转型升级对策探讨(下). 中国农机化学报, 38(09):88-94[doi:10.13733/j.jcam.issn.2095-5553.2017.09.018http://dx.doi.org/10.13733/j.jcam.issn.2095-5553.2017.09.018]
Zhao C J. 2014. Advances of Research and Application in Remote Sensing for Agriculture. Transactions of the Chinese Society for Agricultural Machinery, 45(12):277-293
赵春江. 2014. 农业遥感研究与应用进展. 农业机械学报, 45(12):277-293[doi:10.6041/j.issn.1000-1298.2014.12.041http://dx.doi.org/10.6041/j.issn.1000-1298.2014.12.041]
Zhong Y, Hu X, Luo C, Wang X, Zhao J and Zhang L. 2020. WHU-Hi: UAV-borne hyperspectral with high spatial resolution (H2) benchmark datasets and classifier for precise crop identification based on deep convolutional neural network with CRF. Remote Sensing of Environment, 250:112012[doi:10.1016/j.rse.2020.112012].
Zhong Z, Li J, Luo Z and Chapman M. 2018. Spectral–Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Transactions on Geoscience and Remote Sensing, 56(2):847-858[doi:10.1109/TGRS.2017.2755542http://dx.doi.org/10.1109/TGRS.2017.2755542].
Zhu D H, Liu Y M, Feng Q L, Ou C, Guo Hao and Liu J T. 2020. Spatial-temporal Dynamic Changes of Agricultural Greenhouses in Shandong Province in Recent 30 Years Based on Google Earth Engine. Transactions of the Chinese Society for Agricultural Machinery, 51(01):168-175
朱德海, 刘逸铭, 冯权泷, 欧聪, 郭浩, 刘建涛. 2020. 基于GEE的山东省近30年农业大棚时空动态变化研究. 农业机械学报, 51(01):168-175[doi:10.6041/j.issn.1000-1298.2020.01.018http://dx.doi.org/10.6041/j.issn.1000-1298.2020.01.018]
相关文章
相关作者
相关机构