Quantitative remote sensing study on the spatiotemporal distribution and sources of HCHO in Guangzhou based on hyperspectral technology
- Vol. 27, Issue 8, Pages: 1844-1855(2023)
DOI: 10.11834/jrs.20232449
Quote
扫 描 看 全 文
扫 描 看 全 文
Quote
魏少聪,邢成志,林继楠,宋宇航,胡启后,季祥光,滕佳华,徐宁宁,刘诚.2023.基于高光谱技术的广州市HCHO时空分布和来源定量遥感研究.遥感学报,27(8): 1844-1855
Wei S C,Xing C Z,Lin J N,Song Y H,Hu Q H,Ji X G,Teng J H,Xu N N and Liu C. 2023. Quantitative remote sensing study on the spatiotemporal distribution and sources of HCHO in Guangzhou based on hyperspectral technology. National Remote Sensing Bulletin, 27(8):1844-1855
甲醛(HCHO)作为一种重要的大气污染物,不仅会影响区域大气环境质量,还会对人体健康造成危害。然而,目前HCHO的监测手段依然以地面监测为主,缺乏垂直观测阻碍了人们对HCHO垂直演化和高空大气化学过程的深入认识。本文基于搭设于广州地球化学研究所高光谱设备的观测数据,通过最优估计反演算法获得了2020年12月至2021年11月期间的HCHO垂直廓线。研究发现,广州市HCHO浓度在垂直方向呈现出边界层底层(6.61 ppb)>边界层中层(4.76 ppb)>边界层顶层(3.00 ppb);在时间上表现为夏季(8.58 ppb)>春季(8.50 ppb)>秋季(8.05 ppb)>冬季(5.43 ppb);不同季节的HCHO垂直日变化特征相似,最高浓度均出现在200 m且呈现出“双峰”变化模式,第一个峰值出现在08:00—10:00,第二个峰值出现在14:00左右。此外,基于遥感数据建立多元线性回归模型实现了对观测期间HCHO背景浓度、一次和二次来源浓度的剥离。研究发现,整个观测期间HCHO二次源浓度(约占64.10%)>背景浓度(约占20.20%)>一次源浓度(约占15.70%);此外,受VOCs排放浓度与光化学反应强度的影响,夏季二次HCHO浓度占比明显高于冬季。通过对HCHO周末与工作日的垂直日变化特征进行分析,得出广州周末HCHO排放水平并没有表现出明显的下降。本研究可加强对HCHO时空分布特征的深入认识,为污染防控措施的制定提供数据支持。
As an important air pollutant, formaldehyde (HCHO) not only affects the quality of the regional atmospheric environment but also harms human health. However, the current monitoring methods for HCHO are mainly based on surface in situ measurements, and the lack of vertical observations significantly hinders an in-depth understanding of the vertical evolution and chemical processes of HCHO, especially in the upper atmosphere. In this study, we retrieved HCHO vertical profiles by using the optimal estimation method (OEM) and hyperspectral remote sensing instrument measurements in Guangzhou Institute of Geochemistry (CAS) from December 2020 to November 2021. The HCHO in the vertical direction varied in the order of lower boundary layer (6.61 ppb) > middle boundary layer (4.76 ppb) > upper boundary layer (3.00 ppb). For the seasonal variation, HCHO varied in the order of summer (8.58 ppb) > spring (8.50 ppb) > autumn (8.05 ppb) > winter (5.43 ppb). The HCHO profiles in different seasons showed similarities in their diurnal variation characteristics. The highest HCHO concentrations usually appeared at 200 m and exhibited a “bi-peak” pattern, with the first peak occurring at 08:00—10:00 and the second occurring around 14:00. We also established a multiple linear regression model based on hyperspectral remote sensing instrument data to classify the measured HCHO to background, primary, and secondary concentrations. The HCHO secondary concentration (~64.10%) was the highest, followed by the background concentration (~20.20%) and primary concentration (~15.70%). The proportion of secondary HCHO in summer was significantly higher than that in winter mainly due to the enhanced VOCs emissions and reactivity of the photochemical process. By analyzing the diurnal variations of HCHO profiles on weekdays and weekends, we concluded that the HCHO emission level in Guangzhou did not significantly decrease during weekends. This study can help further understand the tempo-spatial distribution characteristics of HCHO and provide data support for the formulation of pollution prevention and control measures.
遥感高光谱技术甲醛垂直分布季节变化二次源周末效应广州市
remote sensinghyperspectral remote sensingformaldehydevertical distributionseasonal variationsecondary sourceweekend effectGuangzhou
Agathokleous E and Calabrese E J. 2021. Formaldehyde: another hormesis-inducing chemical. Environmental Research, 199: 111395 [DOI: 10.1016/j.envres.2021.111395http://dx.doi.org/10.1016/j.envres.2021.111395]
Benavent N, Garcia-Nieto D, Wang S S and Saiz-Lopez A. 2019. MAX-DOAS measurements and vertical profiles of glyoxal and formaldehyde in Madrid, Spain. Atmospheric Environment, 199: 357-367 [DOI: 10.1016/j.atmosenv.2018.11.047http://dx.doi.org/10.1016/j.atmosenv.2018.11.047]
Bobrowski N, Hönninger G, Galle B and Platt U. 2003. Detection of bromine monoxide in a volcanic plume. Nature, 423(6937): 273-276 [DOI: 10.1038/nature01625http://dx.doi.org/10.1038/nature01625]
Bösch T, Rozanov V, Richter A, Peters E, Rozanov A, Wittrock F, Merlaud A, Lampel J, Schmitt S, de Haij M, Berkhout S, Henzing B, Apituley A, den Hoed M, Vonk J, Tiefengraber M, Müller M and Burrows J P. 2018. BOREAS‒a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases. Atmospheric Measurement Techniques, 11(12): 6833-6859 [DOI: 10.5194/amt-11-6833-2018http://dx.doi.org/10.5194/amt-11-6833-2018]
Chance K and Kurucz R L. 2010. An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. Journal of Quantitative Spectroscopy and Radiative Transfer, 111(9): 1289-1295 [DOI: 10.1016/j.jqsrt.2010.01.036http://dx.doi.org/10.1016/j.jqsrt.2010.01.036]
Chance K V and Spurr R J D. 1997. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. Applied Optics, 36(21): 5224-5230 [DOI: 10.1364/AO.36.005224http://dx.doi.org/10.1364/AO.36.005224]
Clémer K, Van Roozendael M, Fayt C, Hendrick F, Hermans C, Pinardi G, Spurr R, Wang P and De Mazière M. 2010. Multiple wavelength retrieval of tropospheric aerosol optical properties from MAXDOAS measurements in Beijing. Atmospheric Measurement Techniques, 3(4): 863-878 [DOI: 10.5194/amt-3-863-2010http://dx.doi.org/10.5194/amt-3-863-2010]
Cleveland W S, Graedel T E, Kleiner B and Warner J L. 1974. Sunday and workday variations in photochemical air pollutants in New Jersey and New York. Science, 186(4168): 1037-1038 [DOI: 10.1126/science.186.4168.1037http://dx.doi.org/10.1126/science.186.4168.1037]
de Blas M, Ibáñez P, García J A, Gómez M C, Navazo M, Alonso L, Durana N, Iza J, Gangoiti G and de Cámara E S. 2019. Summertime high resolution variability of atmospheric formaldehyde and non-methane volatile organic compounds in a rural background area. Science of the Total Environment, 647: 862-877 [DOI: 10.1016/j.scitotenv.2018.07.411http://dx.doi.org/10.1016/j.scitotenv.2018.07.411]
De Smedt I, Theys N, Yu H, Danckaert T, Lerot C, Compernolle S, Van Roozendael M, Richter A, Hilboll A, Peters E, Pedergnana M, Loyola D, Beirle S, Wagner T, Eskes H, van Geffen J, Boersma K F and Veefkind P. 2018. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmospheric Measurement Techniques, 11(4): 2395-2426 [DOI: 10.5194/amt-11-2395-2018http://dx.doi.org/10.5194/amt-11-2395-2018]
Fleischmann O C, Hartmann M, Burrows J P and Orphal J. 2004. New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 168(1/2): 117-132 [DOI: 10.1016/j.jphotochem.2004.03.026http://dx.doi.org/10.1016/j.jphotochem.2004.03.026]
Friedfeld S, Fraser M, Ensor K, Tribble S, Rehle D, Leleux D and Tittel F. 2002. Statistical analysis of primary and secondary atmospheric formaldehyde. Atmospheric Environment, 36(30): 4767-4775 [DOI: 10.1016/S1352-2310(02)00558-7http://dx.doi.org/10.1016/S1352-2310(02)00558-7]
Frieß U, Monks P S, Remedios J J, Rozanov A, Sinreich R, Wagner T and Platt U. 2006. MAX-DOAS O4 measurements: a new technique to derive information on atmospheric aerosols: 2. Modeling studies. Journal of Geophysical Research: Atmospheres, 111(D14): D14203 [DOI: 10.1029/2005JD006618http://dx.doi.org/10.1029/2005JD006618]
Garland R M, Yang H, Schmid O, Rose D, Nowak A, Achtert P, Wiedensohler A, Takegawa N, Kita K, Miyazaki Y, Kondo Y, Hu M, Shao M, Zeng L M, Zhang Y H, Andreae M O and Pöschl U. 2008. Aerosol optical properties in a rural environment near the mega-city Guangzhou, China: implications for regional air pollution, radiative forcing and remote sensing. Atmospheric Chemistry and Physics, 8(17): 5161-5186 [DOI: 10.5194/acp-8-5161-2008http://dx.doi.org/10.5194/acp-8-5161-2008]
Gong S L, Liu Y L, He J J, Zhang L, Lu S H and Zhang X Y. 2022. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 1: synoptic circulation patterns and pollution. Science of the Total Environment, 815: 152770 [DOI: 10.1016/j.scitotenv.2021.152770http://dx.doi.org/10.1016/j.scitotenv.2021.152770]
Hong Q Q, Liu C, Chan K L, Hu Q H, Xie Z Q, Liu H R, Si F Q and Liu J G. 2018. Ship-based MAX-DOAS measurements of tropospheric NO2, SO2, and HCHO distribution along the Yangtze River. Atmospheric Chemistry and Physics, 18(8): 5931-5951 [DOI: 10.5194/acp-18-5931-2018http://dx.doi.org/10.5194/acp-18-5931-2018]
Hong Q Q, Liu C, Hu Q H, Xing C Z, Tan W, Liu H R, Huang Y, Zhu Y, Zhang J S, Geng T Z and Liu J G. 2019. Evolution of the vertical structure of air pollutants during winter heavy pollution episodes: the role of regional transport and potential sources. Atmospheric Research, 228: 206-222 [DOI: 10.1016/j.atmosres.2019.05.016http://dx.doi.org/10.1016/j.atmosres.2019.05.016]
Hong Q Q, Liu C, Hu Q H, Zhang Y L, Xing C Z, Ou J P, Tan W, Liu H R, Huang X Q and Wu Z F. 2022a. Vertical distribution and temporal evolution of formaldehyde and glyoxal derived from MAX-DOAS observations: the indicative role of VOC sources. Journal of Environmental Sciences, 122: 92-104 [DOI: 10.1016/j.jes.2021.09.025http://dx.doi.org/10.1016/j.jes.2021.09.025]
Hong Q Q, Zhu L B, Xing C Z, Hu Q H, Lin H, Zhang C X, Zhao C H, Liu T, Su W J and Liu C. 2022b. Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China. Science of the Total Environment, 827: 154045 [DOI: 10.1016/j.scitotenv.2022.154045http://dx.doi.org/10.1016/j.scitotenv.2022.154045]
Hönninger G and Platt U. 2002. Observations of BrO and its vertical distribution during surface ozone depletion at Alert. Atmospheric Environment, 36(15/16): 2481-2489 [DOI: 10.1016/S1352-2310(02)00104-8http://dx.doi.org/10.1016/S1352-2310(02)00104-8]
Hoque H M S, Irie H and Damiani A. 2018. First MAX-DOAS observations of formaldehyde and glyoxal in Phimai, Thailand. Journal of Geophysical Research: Atmospheres, 123(17): 9957-9975 [DOI: 10.1029/2018JD028480http://dx.doi.org/10.1029/2018JD028480]
Hu Q H, Liu C, Li Q H, Liu T, Ji X G, Zhu Y Z, Xing C Z, Liu H R, Tan W and Gao M. 2022. Vertical profiles of the transport fluxes of aerosol and its precursors between Beijing and its southwest cities. Environmental Pollution, 312: 119988 [DOI: 10.1016/j.envpol.2022.119988http://dx.doi.org/10.1016/j.envpol.2022.119988]
Javed Z, Liu C, Khokhar M F, Tan W, Liu H R, Xing C Z, Ji X G, Tanvir A, Hong Q Q, Sandhu O and Rehman A. 2019. Ground-based MAX-DOAS observations of CHOCHO and HCHO in Beijing and Baoding, China. Remote Sensing, 11(13): 1524 [DOI: 10.3390/rs11131524http://dx.doi.org/10.3390/rs11131524]
Ji X G, Liu C, Wang Y, Hu Q H, Lin H, Zhao F, Xing C Z, Tang G Q, Zhang J Q and Wagner T. 2023. Ozone profiles without blind area retrieved from MAX-DOAS measurements and comprehensive validation with multi-platform observations. Remote Sensing of Environment, 284: 113339 [DOI: 10.1016/j.rse.2022.113339http://dx.doi.org/10.1016/j.rse.2022.113339]
Kreher K, Van Roozendael M, Hendrick F, Apituley A, Dimitropoulou E, Frieß U, Richter A, Wagner T, Lampel J, Abuhassan N, Ang L, Anguas M, Bais A, Benavent N, Bösch T, Bognar K, Borovski A, Bruchkouski I, Cede A, Chan K L, Donner S, Drosoglou T, Fayt C, Finkenzeller H, Garcia-Nieto D, Gielen C, Gómez-Martín L, Hao N, Henzing B, Herman J R, Hermans C, Hoque S, Irie H, Jin J L, Johnston P, Khayyam Butt J, Khokhar F, Koenig T K, Kuhn J, Kumar V, Liu C, Ma J Z, Merlaud A, Mishra A K, Müller M, Navarro-Comas M, Ostendorf M, Pazmino A, Peters E, Pinardi G, Pinharanda M, Piters A, Platt U, Postylyakov O, Prados-Roman C, Puentedura O, Querel R, Saiz-Lopez A, Schönhardt A, Schreier S F, Seyler A, Sinha V, Spinei E, Strong K, Tack F, Tian X, Tiefengraber M, Tirpitz J L, van Gent J, Volkamer R, Vrekoussis M, Wang S S, Wang Z R, Wenig M, Wittrock F, Xie P H, Xu J, Yela M, Zhang C X and Zhao X Y. 2020. Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV-visible spectrometers during CINDI-2. Atmospheric Measurement Techniques, 13(5): 2169-2208 [DOI: 10.5194/amt-13-2169-2020http://dx.doi.org/10.5194/amt-13-2169-2020]
Kumar V, Beirle S, Dörner S, Mishra A K, Donner S, Wang Y, Sinha V and Wagner T. 2020. Long-term MAX-DOAS measurements of NO2, HCHO, and aerosols and evaluation of corresponding satellite data products over Mohali in the Indo-Gangetic Plain. Atmospheric Chemistry and Physics, 20(22): 14183-14235 [DOI: 10.5194/acp-20-14183-2020http://dx.doi.org/10.5194/acp-20-14183-2020]
Lampel J, Wang Y, Hilboll A, Beirle S, Sihler H, Puķīte J, Platt U and Wagner T. 2017. The tilt effect in DOAS observations. Atmospheric Measurement Techniques, 10(12): 4819-4831 [DOI: 10.5194/amt-10-4819-2017http://dx.doi.org/10.5194/amt-10-4819-2017]
Lee H, Ryu J, Irie H, Jang S H, Park J, Choi W and Hong H. 2015. Investigations of the diurnal variation of vertical HCHO profiles based on MAX-DOAS measurements in Beijing: comparisons with OMI vertical column data. Atmosphere, 6(11): 1816-1832 [DOI: 10.3390/atmos6111816http://dx.doi.org/10.3390/atmos6111816]
Li M M, Dong H, Wang B G, Zhao W L, Zare Sakhvidi M J, Li L, Lin G Z and Yang J. 2021. Association between ambient ozone pollution and mortality from a spectrum of causes in Guangzhou, China. Science of the Total Environment, 754: 142110 [DOI: 10.1016/j.scitotenv.2020.142110http://dx.doi.org/10.1016/j.scitotenv.2020.142110]
Li X, Brauers T, Hofzumahaus A, Lu K, Li Y P, Shao M, Wagner T and Wahner A. 2013. MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China. Atmospheric Chemistry and Physics, 13(4): 2133-2151 [DOI: 10.5194/acp-13-2133-2013http://dx.doi.org/10.5194/acp-13-2133-2013]
Lin H, Xing C Z, Hong Q Q, Liu C, Ji X G, Liu T, Lin J N, Lu C, Tan W, Li Q H and Liu H R. 2022. Diagnosis of ozone formation sensitivities in different height layers via MAX-DOAS observations in Guangzhou. Journal of Geophysical Research: Atmospheres, 127(15): e2022JD036803 [DOI: 10.1029/2022JD036803http://dx.doi.org/10.1029/2022JD036803]
Ling Z H, Zhao J, Fan S J and Wang X M. 2017. Sources of formaldehyde and their contributions to photochemical O3 formation at an urban site in the Pearl River Delta, southern China. Chemosphere, 168: 1293-1301 [DOI: 10.1016/j.chemosphere.2016.11.140http://dx.doi.org/10.1016/j.chemosphere.2016.11.140]
Liu C, Gao M, Hu Q H, Brasseur G P and Carmichael G R. 2021. Stereoscopic monitoring: a promising strategy to advance diagnostic and prediction of air pollution. Bulletin of the American Meteorological Society, 102(4): E730-E737 [DOI: 10.1175/BAMS-D-20-0217.1http://dx.doi.org/10.1175/BAMS-D-20-0217.1]
Liu C, Xing C Z, Hu Q H, Li Q H, Liu H R, Hong Q Q, Tan W, Ji X G, Lin H, Lu C, Lin J N, Liu H Y, Wei S C, Chen J, Yang K P, Wang S T, Liu T and Chen Y J. 2022a. Ground-based hyperspectral stereoscopic remote sensing network: a promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering, 19: 71-83 [DOI: 10.1016/j.eng.2021.02.019http://dx.doi.org/10.1016/j.eng.2021.02.019]
Liu C, Xing C Z, Hu Q H, Wang S S, Zhao S H and Gao M. 2022b. Stereoscopic hyperspectral remote sensing of the atmospheric environment: innovation and prospects. Earth-Science Reviews, 226: 103958 [DOI: 10.1016/j.earscirev.2022.103958http://dx.doi.org/10.1016/j.earscirev.2022.103958]
Luecken D J, Hutzell W T, Strum M L and Pouliot G A. 2012. Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. Atmospheric Environment, 47: 477-490 [DOI: 10.1016/j.atmosenv.2011.10.005http://dx.doi.org/10.1016/j.atmosenv.2011.10.005]
Luo Y H, Dou K, Fan G Q, Huang S, Si F Q, Zhou H J, Wang Y J, Pei C L, Tang F Y, Yang D S, Xi L, Yang T P, Zhang T S and Liu W Q. 2020. Vertical distributions of tropospheric formaldehyde, nitrogen dioxide, ozone and aerosol in southern China by ground-based MAX-DOAS and LIDAR measurements during PRIDE-GBA 2018 campaign. Atmospheric Environment, 226: 117384 [DOI: 10.1016/j.atmosenv.2020.117384http://dx.doi.org/10.1016/j.atmosenv.2020.117384]
Meller R and Moortgat G K. 2000. Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323 K in the wavelength range 225-375 nm. Journal of Geophysical Research: Atmospheres, 105(D6): 7089-7101 [DOI: 10.1029/1999JD901074http://dx.doi.org/10.1029/1999JD901074]
Nishikawa A, Nagano K, Kojima H and Ogawa K. 2021. A comprehensive review of mechanistic insights into formaldehyde-induced nasal cavity carcinogenicity. Regulatory Toxicology and Pharmacology, 123: 104937 [DOI: 10.1016/j.yrtph.2021.104937http://dx.doi.org/10.1016/j.yrtph.2021.104937]
Parrish D D, Ryerson T B, Mellqvist J, Johansson J, Fried A, Richter D, Walega J G, Washenfelder R A, de Gouw J A, Peischl J, Aikin K C, McKeen S A, Frost G J, Fehsenfeld F C and Herndon S C. 2012. Primary and secondary sources of formaldehyde in urban atmospheres: Houston Texas region. Atmospheric Chemistry and Physics, 12(7): 3273-3288 [DOI: 10.5194/acp-12-3273-2012http://dx.doi.org/10.5194/acp-12-3273-2012]
Platt U and Stutz J. 2008. Differential Optical Absorption Spectroscopy: Principles and Applications. Berlin: Springer-Verlag [DOI: 10.1007/978-3-540-75776-4http://dx.doi.org/10.1007/978-3-540-75776-4]
Rozanov A, Rozanov V, Buchwitz M, Kokhanovsky A and Burrows J P. 2005. SCIATRAN 2.0-A new radiative transfer model for geophysical applications in the 175—2400 nm spectral region. Advances in Space Research, 36(5): 1015-1019 [DOI: 10.1016/j.asr.2005.03.012http://dx.doi.org/10.1016/j.asr.2005.03.012]
Selim S. 1977. Separation and quantitative determination of traces of carbonyl compounds as their 2,4-dinitrophenylhydrazones by high-pressure liquid chromatography. Journal of Chromatography A, 136(2): 271-277 [DOI: 10.1016/S0021-9673(00)86279-2http://dx.doi.org/10.1016/S0021-9673(00)86279-2]
Serdyuchenko A, Gorshelev V, Weber M, Chehade W and Burrows J P. 2014. High spectral resolution ozone absorption cross-sections‒Part 2: temperature dependence. Atmospheric Measurement Techniques, 7(2): 625-636 [DOI: 10.5194/amt-7-625-2014http://dx.doi.org/10.5194/amt-7-625-2014]
Shoaib A, Khokhar M F and Sandhu O. 2020. Investigating the temporal variation of formaldehyde using MAX-DOAS and satellite observations over Islamabad, Pakistan. Atmospheric Pollution Research, 11(1): 193-204 [DOI: 10.1016/j.apr.2019.10.008http://dx.doi.org/10.1016/j.apr.2019.10.008]
Song L, Deng T, Wu D, He G W, Sun J Y, Weng J F and Wu S. 2019. Study on planetary boundary layer height in a typical haze period and different weather types over Guangzhou. Acta Scientiae Circumstantiae, 39(5): 1381-1391
宋烺, 邓涛, 吴兑, 何国文, 孙嘉胤, 翁佳烽, 吴晟. 2019. 广州地区典型灰霾过程及不同天气类型下边界层高度研究. 环境科学学报, 39(5): 1381-1391 [DOI: 10.13671/j.hjkxxb.2019.0080http://dx.doi.org/10.13671/j.hjkxxb.2019.0080]
Steiner A L, Cohen R C, Harley R A, Tonse S, Millet D B, Schade G W and Goldstein A H. 2008. VOC reactivity in central California: comparing an air quality model to ground-based measurements. Atmospheric Chemistry and Physics, 8(2): 351-368 [DOI: 10.5194/acp-8-351-2008http://dx.doi.org/10.5194/acp-8-351-2008]
Su W J, Liu C, Chan K L, Hu Q H, Liu H R, Ji X G, Zhu Y Z, Liu T, Zhang C X, Chen Y J and Liu J G. 2020. An improved TROPOMI tropospheric HCHO retrieval over China. Atmospheric Measurement Techniques, 13(11): 6271-6292 [DOI: 10.5194/amt-13-6271-2020http://dx.doi.org/10.5194/amt-13-6271-2020]
Sun J, Shen Z X, Wang R N, Li G H, Zhang Y, Zhang B, He K, Tang Z Y, Xu H M, Qu L L, Sai Hang Ho S, Liu S X and Cao J J. 2021a. A comprehensive study on ozone pollution in a megacity in North China Plain during summertime: observations, source attributions and ozone sensitivity. Environment International, 146: 106279 [DOI: 10.1016/j.envint.2020.106279http://dx.doi.org/10.1016/j.envint.2020.106279]
Sun Y W, Yin H, Liu C, Zhang L, Cheng Y, Palm M, Notholt J, Lu X, Vigouroux C, Zheng B, Wang W, Jones N, Shan C G, Qin M, Tian Y, Hu Q H, Meng F H and Liu J G. 2021b. Mapping the drivers of formaldehyde (HCHO) variability from 2015 to 2019 over eastern China: insights from Fourier transform infrared observation and GEOS-Chem model simulation. Atmospheric Chemistry and Physics, 21(8): 6365-6387 [DOI: 10.5194/acp-21-6365-2021http://dx.doi.org/10.5194/acp-21-6365-2021]
Thalman R and Volkamer R. 2013. Temperature dependent absorption cross-sections of O2‒O2 collision pairs between 340 and 630 nm and at atmospherically relevant pressure. Physical Chemistry Chemical Physics, 15(37): 15371-15381 [DOI: 10.1039/C3CP50968Khttp://dx.doi.org/10.1039/C3CP50968K]
Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A and Coquart B. 1998. Measurements of the NO2 absorption cross-section from 42 000 cm‒1 to 10 000 cm‒1 (238-1000 nm) at 220 K and 294 K. Journal of Quantitative Spectroscopy and Radiative Transfer, 59(3/5): 171-184 [DOI: 10.1016/S0022-4073(97)00168-4http://dx.doi.org/10.1016/S0022-4073(97)00168-4]
Wang H L, Zhang X and Chen Z M. 2009. Development of DNPH/HPLC method for the measurement of carbonyl compounds in the aqueous phase: applications to laboratory simulation and field measurement. Environmental Chemistry, 6(5): 389-397 [DOI: 10.1071/EN09057http://dx.doi.org/10.1071/EN09057]
Wang Q G, Han Z W, Wang T J and Zhang R J. 2008. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China. Science of the Total Environment, 395(1): 41-49 [DOI: 10.1016/j.scitotenv.2008.01.059http://dx.doi.org/10.1016/j.scitotenv.2008.01.059]
Wen L Y, Yang C, Liao X L, Zhang Y H, Chai X Y, Gao W J, Guo S L, Bi Y L, Tsang S Y, Chen Z F, Qi Z H and Cai Z W. 2022. Investigation of PM2.5 pollution during COVID-19 pandemic in Guangzhou, China. Journal of Environmental Sciences, 115: 443-452 [DOI: 10.1016/j.jes.2021.07.009http://dx.doi.org/10.1016/j.jes.2021.07.009]
Wood E C, Canagaratna M R, Herndon S C, Onasch T B, Kolb C E, Worsnop D R, Kroll J H, Knighton W B, Seila R, Zavala M, Molina L T, DeCarlo P F, Jimenez J L, Weinheimer A J, Knapp D J, Jobson B T, Stutz J, Kuster W C and Williams E J. 2010. Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston. Atmospheric Chemistry and Physics, 10(18): 8947-8968 [DOI: 10.5194/acp-10-8947-2010http://dx.doi.org/10.5194/acp-10-8947-2010]
Xing C Z, Liu C, Hu Q H, Fu Q Y, Lin H, Wang S T, Su W J, Wang W W, Javed Z and Liu J G. 2020. Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Science of the Total Environment, 715: 136258 [DOI: 10.1016/j.scitotenv.2019.136258http://dx.doi.org/10.1016/j.scitotenv.2019.136258]
Xing C Z, Liu C, Wang S S, Chan K L, Gao Y, Huang X, Su W J, Zhang C X, Dong Y S, Fan G Q, Zhang T S, Chen Z Y, Hu Q H, Su H, Xie Z Q and Liu J G. 2017. Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China. Atmospheric Chemistry and Physics, 17(23): 14275-14289 [DOI: 10.5194/acp-17-14275-2017http://dx.doi.org/10.5194/acp-17-14275-2017]
Xue J X, Zhao T, Luo Y F, Miao C K, Su P J, Liu F, Zhang G H, Qin S D, Song Y T, Bu N S and Xing C Z. 2022. Identification of ozone sensitivity for NO2 and secondary HCHO based on MAX-DOAS measurements in northeast China. Environment International, 160: 107048 [DOI: 10.1016/j.envint.2021.107048http://dx.doi.org/10.1016/j.envint.2021.107048]
Zou Y, Deng X J, Deng T, Yin C Q and Li F. 2019. One-year characterization and reactivity of isoprene and its impact on surface ozone formation at a suburban site in Guangzhou, China. Atmosphere, 10(4): 201 [DOI: 10.3390/atmos10040201http://dx.doi.org/10.3390/atmos10040201]
相关文章
相关作者
相关机构