Airborne LiDAR Point Cloud Clustering Simplification Algorithm Considering Terrain Features and Boundary Protection against Contraction
- Pages: 1-16(2023)
Published Online: 29 November 2023
DOI: 10.11834/jrs.20233032
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published Online: 29 November 2023 ,
扫 描 看 全 文
武慧明,陈传法,孙延宁,郭娇娇,贝祎轩.XXXX.顾及地形特征和边界防收缩的机载LiDAR地面点云聚类简化方法.遥感学报,XX(XX): 1-16
WU Huiming,CHEN Chuanfa,SUN Yanning,GUO Jiaojiao,BEI Yixuan. XXXX. Airborne LiDAR Point Cloud Clustering Simplification Algorithm Considering Terrain Features and Boundary Protection against Contraction. National Remote Sensing Bulletin, XX(XX):1-16
点云简化是海量机载LiDAR地面点云高效传输和多尺度应用的前提。针对目前地面点云简化方法存在复杂环境适用性差、地形细节特征丢失等问题,本文提出了一种顾及地形特征和边界防收缩的机载LiDAR点云聚类简化算法。首先利用K-means算法将点云分割为初始点云簇,然后依据各簇的地形复杂度再次对其细分,接着借助点云法向量信息以及邻接簇间边缘点的高程差识别地形特征点,最后通过保留目标区域的边界特征点防止原始点云边界收缩。选取6组高密度机载LiDAR点云为数据源,将本文方法与七种经典点云简化方法(包括随机方法、体素格网方法、基于曲率的方法、最大Z容差方法、基于图的方法、基于多指标加权方法和基于迭代的简化方法)比较分析。实验结果表明:与其他传统方法相比,本文方法生成的数字高程模型(DEM)的平均RMSE至少降低了12.1 %,平均MAE至少降低了9.6 %,其派生品(包括平均坡度和地形粗糙度)与参考值也更为接近,而且较好的保留了地形特征信息。
Objective Point cloud simplification is a prerequisite for efficient transmission and multi-scale applications of massive airborne LiDAR ground point clouds. However
existing ground point cloud simplification methods suffer from poor applicability in complex environments and loss of terrain detail features. Method This paper proposes an Airborne LiDAR Point Cloud Clustering Simplification Algorithm Considering Terrain Features and Boundary Protection against Contraction. Firstly
the point cloud is segmented into initial point cloud clusters using the K-means algorithm. Then
based on the terrain complexity of each cluster
further subdivisions are performed. Subsequently
using the point cloud normal vector information within the subdivided sub-clusters and the elevation differences of edge points between adjacent clusters
terrain feature points at different terrains are identified. Finally
boundary feature points of the target area are preserved to prevent the contraction of the original point cloud boundary. Result In six groups of point cloud scenes with high terrain complexity
the proposed method is compared and analyzed with seven classical point cloud simplification methods
including random methods
voxel grid methods
curvature-based methods
maximum Z tolerance methods
graph-based methods
multi-index weighted methods
and iterative simplification methods. The experimental results demonstrate that
compared to other traditional methods
the proposed method achieves a minimum reduction of 12.1% in the average root mean square error (RMSE) of the generated digital elevation models (DEMs) and a minimum reduction of 9.6% in the average mean absolute error (MAE). The derived products
including average slope and terrain roughness
also exhibit closer agreement with the reference values. Qualitative analysis results indicate that the DEM constructed by the proposed method aligns better with the reference DEM and provides more accurate and detailed terrain features. Conclusion The above experimental results demonstrate that the proposed method effectively reduces the accuracy loss caused by simplification of DEMs while maintaining strong adaptability to terrain. This method can be applied to intelligent simplification of airborne LiDAR point cloud data
enabling the construction of high-precision DEMs to meet the requirements of geoscientific analysis for high accuracy and efficiency.
机载LiDAR点云简化K-means地形特征DEM精度
airborne LiDARpoint cloud simplificationK-meansterrain featuresDEMaccuracy
Benhabiles H, Aubreton O, Barki H, et al. 2013. Fast simplification with sharp feature preserving for 3D point clouds. 2013 11th international symposium on programming and systems (ISPS). IEEE, 47-52.[ DOI: 10.1109/ISPS.2013.6581492]
Brasington J, Vericat D, Rychkov I. 2012. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning . Water Resources Research, 48(11): 1-19.[ DOI: 10.1029/2012WR012223]
Campos R, Quintana J, Garcia R, Schmitt T, Spoelstra G, Ma Schaap D. 2020. 3d simplification methods and large scale terrain tiling . Remote Sensing, 12(3): 437-461.[ DOI: 10.3390/rs12030437]
Chang J, Zhao L, Wang H. 2018. Research on k-means clustering point cloud reduction algorithm based on boundary reservation . Eng Surv Mapp, 27: 60-65.[ DOI: 10.19349/j.cnki.issn1006-7949.2018.07.013]
Chang K-T. Introduction to geographic information systems . McGraw-Hill Boston, 2008.
Chen C, Li Y, Yan C, Dai H, Liu G. 2015. A Thin Plate Spline-Based Feature-Preserving Method for Reducing Elevation Points Derived from LiDAR . Remote Sensing, 7(9): 11344-11371.[ DOI: 10.3390/rs70911344]
Chen C, Yan C, Cao X, Guo J, Dai H. 2015. A greedy-based multiquadric method for LiDAR-derived ground data reduction . ISPRS Journal of Photogrammetry and Remote Sensing, 102: 110-121.[ DOI: 10.1016/j.isprsjprs.2015.01.012]
Chen C F, Wang M Y, Yang S, Wang Z. 2021. A multi-resolution hierarchical interpolation-based filtering method for airborne LiDAR point clouds in forest areas. Journal of Shandong University of Science and Technology(Natural Science), 193(2):12-20.
陈传法;王梦樱;杨帅;王珍. 2021. 适用于林区机载LiDAR点云的多分辨率层次插值滤波方法.山东科技大学学报(自然科学版), 193(2):12-20.[DOI:10.16452/j.cnki.sdkjzk.2021.02.002http://dx.doi.org/10.16452/j.cnki.sdkjzk.2021.02.002.]
Chen S, Tian D, Feng C, et al. 2017. Fast resampling of three-dimensional point clouds via graphs[J]. IEEE Transactions on Signal Processing, 66(3): 666-681.[DOI: 10.1109/TSP.2017.2771730http://dx.doi.org/10.1109/TSP.2017.2771730]
De Reu J, Bourgeois J, Bats M, Zwertvaegher A, Gelorini V, De Smedt P, Chu W, Antrop M, De Maeyer P, Finke P. 2013. Application of the topographic position index to heterogeneous landscapes . Geomorphology, 186:39-49.[ DOI: 10.1016/j.geomorph.2012.12.015]
Dou S Q, Zhao X S, Liu C J, Lin Y W, Zhao Y Q. 2016. The Three Dimensional Douglas-Peucker Algorithm for Generalization between River Network Line Element and DEM. Acta Geodaetica et Cartographica Sinica, 45(4): 450-457.
窦世卿, 赵学胜, 刘成军, 林亚文, 赵艳芹. 2016. 河网线要素与DEM综合的三维Douglas-Peucker算法. 测绘学报, 45(4): 450-457.[DOI:10.11947/j.AGCS.2016.20140584http://dx.doi.org/10.11947/j.AGCS.2016.20140584]
Fan L, Atkinson P M. 2019. An iterative coarse-to-fine sub-sampling method for density reduction of terrain point clouds . Remote Sensing, 11(8): 947-958.[ DOI: 10.3390/rs11080947]
Li J T, Cheng X J, Yang Z X, Yang R Q. 2019. Curvature-Grading-Based Compression for Point Cloud Data. Laser & Optoelectronics Progress, 56(14): 142801
李金涛, 程效军, 杨泽鑫, 杨荣淇. 2019. 基于曲率分级的点云数据压缩方法. 激光与光电子学进展, 56(14): 142801[DOI:10.3788/LOP56.142801http://dx.doi.org/10.3788/LOP56.142801]
Lee J. 1991. Comparison of existing methods for building triangular irregular network, models of terrain from grid digital elevation models . International Journal of Geographical Information System, 5(3):267-285.[ DOI: 10.1080/02693799108927855]
Li S Q, Huo L, Shen T, Zhu J, Li P Y, Liu H T. 2021. A Simplification Algorithm for Edge Collapse of 3D Building Model Considering Angle Error. Geomatics and Information Science of Wuhan University, 46(8): 1209-1215.
李少卿, 霍亮, 沈涛, 朱杰, 李品钰, 刘宏涛. 2021. 顾及角度误差的三维建筑模型边折叠简化算法. 武汉大学学报 ( 信息科学版), 46(8): 1209-1215[DOI:10.13203/j.whugis20190269http://dx.doi.org/10.13203/j.whugis20190269]
Liao X H. 2021. Scientific and technological progress and development prospect of the earth observation in China in the past 20 years .National Remote Sensing Bulletin, 25 (1):267-275.
廖小罕. 2021.中国对地观测20年科技进步和发展.遥感学报, 25(1): 267-275.[ DOI:10.11834/jrs.20211017]
Lloyd S. 1982. Least squares quantization in PCM . IEEE transactions on information theory, 28(2): 129-137.[ DOI: 10.1109/ TIT.1982.1056489]
Lv C, Lin W, Zhao B. Approximate intrinsic voxel structure for point cloud simplification[J]. IEEE Transactions on Image Processing, 2021, 30: 7241-7255. [DOI: 10.1109/TIP.2021.3104174http://dx.doi.org/10.1109/TIP.2021.3104174]
Montreuil A L, Bullard J E, Chandler J H, Millett J. 2013. Decadal and seasonal development of embryo dunes on an accreting macrotidal beach: North Lincolnshire, UK . Earth Surface Processes and Landforms, 38(15): 1851-1868.[ DOI: 10.1002/ esp.3432]
Oryspayev D, Sugumaran R, Degroote J, Gray P. 2012. LiDAR data reduction using vertex decimation and processing with GPGPU and multicore CPU technology . Computers & Geoscienc, 43(6):118-125.[ DOI: 10.1016/j.cageo.2011.09.013]
Pomerleau F, Colas F, Siegwart R, Magnenat S. 2013. Comparing ICP variants on real-world data sets . Autonomous Robots, 34(3): 133-148.[ DOI: 10.1007/s10514-013-9327-2]
Qi J, Hu W, Guo Z. 2019. Feature preserving and uniformity-controllable point cloud simplification on graph. 2019 IEEE International conference on multimedia and expo (ICME). IEEE, 284-289.[ DOI: 10.1109/ICME.2019.00057]
Shi B-Q, Liang J, Liu Q. 2011. Adaptive simplification of point cloud using k-means clustering . Computer-Aided Design, 43(8): 910-922.[ https://doi.org/10.1016/j.cad.2011.04.001]
Shi Z, Xu W, Meng H. 2022. A Point Cloud Simplification Algorithm Based on Weighted Feature Indexes for 3D Scanning Sensors[J]. Sensors, 22(19): 7491.[ https://doi.org/10.3390/s22197491]
Yang B, Dong Z. 2013. A shape-based segmentation method for mobile laser scanning point clouds . ISPRS journal of photogrammetry and remote sensing, 81:19-30.[ DOI: 10.1016/j.isprsjprs.2013.04.002]
Yang B S, Chen C, Dong Z. 2022. 3D geospatial information extraction of urban objects for smart surveying and mapping. Acta Geodaetica et Cartographica Sinica, 51(7): 1476-1484.
杨必胜, 陈驰, 董震. 2022. 面向智能化测绘的城市地物三维提取. 测绘学报, 51(7): 1476-1484.[ DOI:10.11947/j.issn.1001-1595.2022.7.chxb202207030]
Yu Z, Wong H S, Peng H, et al. ASM: An adaptive simplification method for 3D point-based models. 2010. Computer-Aided Design, 42(7): 598-612.[ DOI: 10.1016/j.cad.2010.03.003http://dx.doi.org/10.1016/j.cad.2010.03.003]
相关文章
相关作者
相关机构