Domain-adaptation algorithm for remotely sensing building changes through instance contrast learning
- Vol. 28, Issue 7, Pages: 1771-1788(2024)
Received:30 June 2023,
Published:07 July 2024
DOI: 10.11834/jrs.20233259
移动端阅览


浏览全部资源
扫码关注微信
Received:30 June 2023,
Published:07 July 2024
移动端阅览
建筑物变化检测是遥感影像智能解译中的重要研究方向。针对建筑物变化检测的跨域变化检测算法中存在的像素级对比学习噪声过大和目标域样本利用不充分等问题,本文提出了实例级对比学习域适应变化检测算法ICDA-CD。首先,使用区域级域混合替代实例级域混合,以实现源域和目标域图像的有效混合;然后,利用实例级对比学习,降低伪标签噪声的影响。具体来说,在编码器中,拉开变化实例区域双时相特征距离,并在解码器中,拉近各个变化实例特征之间的距离,这可以显著提升模型对源域和目标域特征表示的一致性;最后,在损失计算部分使用伪标签质量估计,使得低置信度区域的像素也可以参与训练,提高了目标域样本的利用率。将本文方法与DACS、DAFormer、和HRDA等3种目前先进的算法进行实验对比。结果表明本文所提出来的方法在LEVIR-CD域迁移至S2Looking以及S2Looking域迁移至LEVIR-CD时F1分数分别达到了43.91%和74.75%,优于几种先进的算法。
Building-change detection automatically identifies changes in ground buildings in remote-sensing images acquired in the same geographic area at different times. Fully supervised change-detection algorithms require a large amount of labeled remote sensing data to make accurate predictions. Manually labeling a building change detection label is time-consuming and labor intensive because it requires a professional to compare and label two images pixel by pixel. Unsupervised domain adaptation technique is an effective means to alleviate this problem. Although the current-domain adaptation algorithm has achieved good results in building-change detection
the following problems persist: Problem 1: A class-based domain mixing strategy is applicable to a large number of categories. In building-change detection
only positive samples of the category “change” are available. Problem 2: In the current pixel-based contrast learning method
pseudo labels generated by a model must have samples with classification errors because the labels of target domains are unidentifiable. This requirement introduces large noise information during contrast training. Problem 3: The pseudo label generated by high-confidence threshold filtering does not leverage the low confidence prediction results of a teacher model. To solve the above problems
this paper proposes a case-level contrast-learning domain-adaptation algorithm for cross-domain building-change detection task.
This paper proposes an instance contrast-learning domain adaptation for change detection (ICDA-CD) method for cross-domain building-change detection. The main contributions are as follows: (1) A region-level domain-mixing method is proposed
which combines data containing the buildings in a source domain and data containing buildings in a target domain on one sample simultaneously. (2) Case-level contrast learning method is proposed. In the encoder
the distance between the biphasic features of a changing building area is pulled apart. In the decoder
the distance between the features of each changing building area is narrowed. (3) A pseudo label quality estimation method is proposed. The pseudo-label quality of each pixel position is estimated by the value predicted by a teacher model
and then loss is weighted.
Domain migration experiments were performed on the LEVIR-CD and S2Looking datasets
and comparison and ablation experiments were performed with advanced domain-adaptation algorithms. In the migration of the LEVIR-CD task to the S2Looking task
the proposed algorithm achieved the highest F1 and IOU of 43.91 and 28.31
respectively. In the migration of the S2Looking task to the LEVIR-CD task
the proposed algorithm achieved the highest F1 scores and IOU of 74.75 and 59.68
respectively.
To solve the problem of unsupervised domain adaptive change detection algorithm across data domains
an ICDA-CD method was proposed. The accuracy of the cross-domain unsupervised domain adaptive change detection algorithm was effectively improved by using region-level domain mixing
case-level contrast learning
and pseudo label quality estimation-weighted loss.
Arnaudo E , Tavera A , Masone C , Dominici F and Caputo B . 2023 . Hierarchical instance mixing across domains in aerial segmentation . IEEE Access , 11 : 13324 - 13333 [ DOI: 10.1109/access.2023.3243475 http://dx.doi.org/10.1109/access.2023.3243475 ]
Asokan A and Anitha J . 2019 . Change detection techniques for remote sensing applications: a survey . Earth Science Informatics , 12 ( 2 ): 143 - 160 [ DOI: 10.1007/s12145-019-00380-5 http://dx.doi.org/10.1007/s12145-019-00380-5 ]
Bandara W G C and Patel V M . 2022 . A transformer-based Siamese network for change detection // IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium . Kuala Lumpur : IEEE: 207 - 210 [ DOI: 10.1109/IGARSS46834.2022.9883686 http://dx.doi.org/10.1109/IGARSS46834.2022.9883686 ]
Chen H , Qi Z P and Shi Z W . 2021 . Remote sensing image change detection with transformers . IEEE Transactions on Geoscience and Remote Sensing , 60 : 5607514 [ DOI: 10.1109/TGRS.2021.3095166 http://dx.doi.org/10.1109/TGRS.2021.3095166 ]
Chen H and Shi Z W . 2020 . A spatial-temporal attention-based method and a new dataset for remote sensing image change detection . Remote Sensing , 12 ( 10 ): 1662 [ DOI: 10.3390/rs12101662 http://dx.doi.org/10.3390/rs12101662 ]
Chen H R X , Wu C , Du B , Zhang L P and Wang L . 2020 . Change detection in multisource VHR images via deep Siamese convolutional multiple-layers recurrent neural network . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 4 ): 2848 - 2864 [ DOI: 10.1109/TGRS.2019.2956756 http://dx.doi.org/10.1109/TGRS.2019.2956756 ]
Chen H Y . 2022 . Change Detection Technology of Heterogeneous Remote Sensing Images Based on Style Transfer . Guangzhou : Guangdong University of Technology
陈淮源 . 2022 . 基于风格迁移的异源遥感图像变化检测技术研究 . 广州 : 广东工业大学 [ DOI: 10.27029/d.cnki.ggdgu.2022.001740 http://dx.doi.org/10.27029/d.cnki.ggdgu.2022.001740 ]
Chen M , Zheng Z D , Yang Y and Chua T S . 2023 . PiPa: pixel-and patch-wise self-supervised learning for domain adaptative semantic segmentation // Proceedings of the 31st ACM International Conference on Multimedia . Ottawa : ACM: 1905 - 1914 [ DOI: 10.1145/3581783.3611708 http://dx.doi.org/10.1145/3581783.3611708 ]
Chen P , Zhang B , Hong D F , Chen Z C , Yang X and Li B P . 2022 . FCCDN: Feature constraint network for VHR image change detection . ISPRS Journal of Photogrammetry and Remote Sensing , 187 : 101 - 119 [ DOI: 10.1016/j.isprsjprs.2022.02.021 http://dx.doi.org/10.1016/j.isprsjprs.2022.02.021 ]
Cheng X and Lei H . 2023 . Semantic segmentation of remote sensing imagery based on multiscale deformable CNN and DenseCRF . Remote Sensing , 15 ( 5 ): 1229 [ DOI: 10.3390/rs15051229 http://dx.doi.org/10.3390/rs15051229 ]
Daudt R C , Le Saux B and Boulch A . 2018 . Fully convolutional siamese networks for change detection // 25th IEEE International Conference on Image Processing (ICIP) . Athens : IEEE: 4063 - 4067 [ DOI: 10.1109/ICIP.2018.8451652 http://dx.doi.org/10.1109/ICIP.2018.8451652 ]
Fang S , Li K Y , Shao J Y and Li Z . 2022 . SNUNet-CD: A densely connected Siamese network for change detection of VHR images . IEEE Geoscience and Remote Sensing Letters , 19 : 8007805 [ DOI: 10.1109/LGRS.2021.3056416 http://dx.doi.org/10.1109/LGRS.2021.3056416 ]
Ganin Y and Lempitsky V . 2015 . Unsupervised domain adaptation by backpropagation // Proceedings of the 32nd International Conference on International Conference on Machine Learning . Lille : JMLR.org: 1180 - 1189
Goodfellow I , Pouget-Abadie J , Mirza M , Xu B , Warde-Farley D , Ozair S , Courville A and Bengio Y . 2020 . Generative adversarial networks . Communications of the ACM , 63 ( 11 ): 139 - 144 [ DOI: 10.1145/3422622 http://dx.doi.org/10.1145/3422622 ]
Hoyer L , Dai D X and Van Gool L . 2022a . DAFormer: improving network architectures and training strategies for domain-adaptive semantic segmentation // Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans : IEEE: 9914 - 9925 [ DOI: 10.1109/cvpr52688.2022.00969 http://dx.doi.org/10.1109/cvpr52688.2022.00969 ]
Hoyer L , Dai D X and Van Gool L . 2022b . HRDA: context-aware high-resolution domain-adaptive semantic segmentation // Proceedings of the 17th European Conference on Computer Vision . Tel Aviv : Springer: 372 - 391 [ DOI: 10.1007/978-3-031-20056-4_22 http://dx.doi.org/10.1007/978-3-031-20056-4_22 ]
Hoyer L , Dai D X , Wang H R and Van Gool L . 2023 . MIC: masked image consistency for context-enhanced domain adaptation // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver : IEEE: 11721 - 11732 [ DOI: 10.1109/CVPR52729.2023.01128 http://dx.doi.org/10.1109/CVPR52729.2023.01128 ]
Huang S T , Wang D L , Wu X H and Tang A . 2019 . DSANet: Dual self-attention network for multivariate time series forecasting // Proceedings of the 28th ACM International Conference on Information and Knowledge Management . Beijing : ACM: 2129 - 2132 [ DOI: 10.1145/3357384.3358132 http://dx.doi.org/10.1145/3357384.3358132 ]
Khankeshizadeh E , Mohammadzadeh A , Moghimi A and Mohsenifar A . 2022 . FCD-R2U-net: Forest change detection in bi-temporal satellite images using the recurrent residual-based U-net . Earth Science Informatics , 15 ( 4 ): 2335 - 2347 [ DOI: 10.1007/s12145-022-00885-6 http://dx.doi.org/10.1007/s12145-022-00885-6 ]
Li G R , Kang G L , Liu W , Wei Y C and Yang Y . 2020 . Content-consistent matching for domain adaptive semantic segmentation // Proceedings of the 16th European Conference on Computer Vision . Glasgow : Springer: 440 - 456 [ DOI: 10.1007/978-3-030-58568-6_26 http://dx.doi.org/10.1007/978-3-030-58568-6_26 ]
Liu H C and Zhang L . 2020 . Adaptive threshold change detection based on type feature for remote sensing image . Journal of Remote Sensing (in Chinese) , 24 ( 6 ): 728 - 738
刘红超 , 张磊 . 2020 . 面向类型特征的自适应阈值遥感影像变化检测 . 遥感学报 , 24 ( 6 ): 728 - 738 [ DOI: 10.11834/jrs.20208328 http://dx.doi.org/10.11834/jrs.20208328 ]
Liu S C , Du K C , Zheng Y J , Chen J , Du P J and Tong X H . 2023 . Remote sensing change detection technology in the era of artificial intelligence: inheritance, development and challenges . Journal of Remote Sensing (in Chinese) , 27 ( 9 ): 1975 - 1987
柳思聪 , 都科丞 , 郑永杰 , 陈晋 , 杜培军 , 童小华 . 2023 . 人工智能时代的遥感变化检测技术: 继承、发展与挑战 . 遥感学报 , 27 ( 9 ): 1975 - 1987 [ DOI: 10.11834/jrs.20222199 http://dx.doi.org/10.11834/jrs.20222199 ]
Liu X F , Yoo C , Xing F X , Oh H , El Fakhri G , Kang J W and Woo J . 2022a . Deep unsupervised domain adaptation: A review of recent advances and perspectives . APSIPA Transactions on Signal and Information Processing , 11 ( 1 ): e 25 [ DOI: 10.1561/116.00000192 http://dx.doi.org/10.1561/116.00000192 ]
Liu X G , Li M M , Wang X Q and Zhang Z C . 2024 . Use of object-based Siamese neural network to build change detection from very high resolution remote-sensing images . National Remote Sensing Bulletin , 28 ( 2 ): 437 - 454
刘宣广 , 李蒙蒙 , 汪小钦 , 张振超 . 2024 . 基于面向对象孪生神经网络的高分辨率遥感影像建筑物变化检测 . 遥感学报 , 28 ( 2 ): 437 - 454 [ DOI: 10.11834/jrs.20221627 http://dx.doi.org/10.11834/jrs.20221627 ]
Liu Y , He X , Li D Y , Yue H and Wei J L . 2024 . CBAM UNet+++: attention mechanism to guide change detection study of full-scale connected networks . National Remote Sensing Bulletin , 28 ( 4 ): 1052 - 1065
刘英 , 何雪 , 李单阳 , 岳辉 , 魏嘉莉 . 2024 . 注意力引导全尺度连接网络的高分辨率影像变化检测 . 遥感学报 , 28 ( 4 ): 1052 - 1065 [ DOI: 10.11834/jrs.20221548 http://dx.doi.org/10.11834/jrs.20221548 ]
Liu Z , Mao H Z , Wu C Y , Feichtenhofer C , Darrell T and Xie S N . 2022b . A convnet for the 2020s // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . New Orleans : IEEE: 11966 - 11976 [ DOI: 10.1109/cvpr52688.2022.01167 http://dx.doi.org/10.1109/cvpr52688.2022.01167 ]
Olsson V , Tranheden W , Pinto J and Svensson L . 2021 . ClassMix: segmentation-based data augmentation for semi-supervised learning // Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision . Waikoloa : IEEE: 1368 - 1377 [ DOI: 10.1109/WACV48630.2021.00141 http://dx.doi.org/10.1109/WACV48630.2021.00141 ]
Shen L , Lu Y , Chen H , Wei H , Xie D H , Yue J B , Chen R , Lv S Y and Jiang B . 2021 . S2Looking: a satellite side-looking dataset for building change detection . Remote Sensing , 13 ( 24 ): 5094 [ DOI: 10.3390/rs13245094 http://dx.doi.org/10.3390/rs13245094 ]
Shi W X , Tan D L and Bao S L . 2020 . Feature enhancement SSD algorithm and its application in remote sensing images target detection . Acta Photonica Sinica , 49 ( 1 ): 0128002
史文旭 , 谭代伦 , 鲍胜利 . 2020 . 特征增强SSD算法及其在遥感目标检测中的应用 . 光子学报 , 49 ( 1 ): 0128002 [ DOI: 10.3788/gzxb20204901.0128002 http://dx.doi.org/10.3788/gzxb20204901.0128002 ]
Shi W Z , Zhang M , Zhang R , Chen S X and Zhan Z . 2020 . Change detection based on artificial intelligence: state-of-the-art and challenges . Remote Sensing , 12 ( 10 ): 1688 [ DOI: 10.3390/rs12101688 http://dx.doi.org/10.3390/rs12101688 ]
Su Y Z , Cheng J , Bai H W , Liu H J and He C T . 2022 . Semantic segmentation of very-high-resolution remote sensing images via deep multi-feature learning . Remote Sensing , 14 ( 3 ): 533 [ DOI: 10.3390/rs14030533 http://dx.doi.org/10.3390/rs14030533 ]
Tranheden W , Olsson V , Pinto J and Svensson L . 2021 . DACS: Domain adaptation via cross-domain mixed sampling // Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision . Waikoloa : IEEE: 1378 - 1388 [ DOI: 10.1109/wacv48630.2021.00142 http://dx.doi.org/10.1109/wacv48630.2021.00142 ]
Tsai Y H , Hung W C , Schulter S , Sohn K , Yang M H and Chandraker M . 2018 . Learning to adapt structured output space for semantic segmentation // Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City : IEEE: 7472 - 7481 [ DOI: 10.1109/cvpr.2018.00780 http://dx.doi.org/10.1109/cvpr.2018.00780 ]
Vayyat M , Kasi J , Bhattacharya A , Ahmed S and Tallamraju R . 2022 . CLUDA: contrastive learning in unsupervised domain adaptation for semantic segmentation . arXiv preprint arXiv : 2208 . 14227 [ DOI: 10.48550/arXiv.2208.14227 http://dx.doi.org/10.48550/arXiv.2208.14227 ]
Vu T H , Jain H , Bucher M , Cord M and Pérez P . 2019 . ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation // Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach : IEEE: 2512 - 2521 [ DOI: 10.1109/cvpr.2019.00262 http://dx.doi.org/10.1109/cvpr.2019.00262 ]
Wang Y X , Peng J R and Zhang Z X . 2021 . Uncertainty-aware pseudo label refinery for domain adaptive semantic segmentation // 2021 IEEE/CVF International Conference on Computer Vision . Montreal : IEEE: 9072 - 9081 [ DOI: 10.1109/iccv48922.2021.00896 http://dx.doi.org/10.1109/iccv48922.2021.00896 ]
Xiao T T , Liu Y C , Zhou B L , Jiang Y N and Sun J . 2018 . Unified perceptual parsing for scene understanding // Proceedings of the 15th European Conference on Computer Vision . Munich : Springer: 432 - 448 [ DOI: 10.1007/978-3-030-01228-1_26 http://dx.doi.org/10.1007/978-3-030-01228-1_26 ]
Xue C C , Gao C X , Hu J , Qiu S and Wang Q . 2023 . Marine boat lights detection method based on sparse representation for low light remote sensing images during night . Journal of Electronics & Information Technology , 45 ( 5 ): 1747 - 1757
薛成宬 , 高彩霞 , 胡坚 , 邱实 , 汪琪 . 2023 . 基于稀疏表示的低照度遥感影像夜间海上船舶灯光检测方法 . 电子与信息学报 , 45 ( 5 ): 1747 - 1757 [ DOI: 10.11999/JEIT220369 http://dx.doi.org/10.11999/JEIT220369 ]
Yang Y C and Soatto S . 2020 . FDA: Fourier domain adaptation for semantic segmentation // Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE: 4084 - 4094 [ DOI: 10.1109/cvpr42600.2020.00414 http://dx.doi.org/10.1109/cvpr42600.2020.00414 ]
Yao Q L , Hu X and Lei H . 2019 . Object detection in remote sensing images using multiscale convolutional neural networks . Acta Optica Sinica , 39 ( 11 ): 1128002
姚群力 , 胡显 , 雷宏 . 2019 . 基于多尺度卷积神经网络的遥感目标检测研究 . 光学学报 , 39 ( 11 ): 1128002 [ DOI: 10.3788/AOS201939.1128002 http://dx.doi.org/10.3788/AOS201939.1128002 ]
Zhou C J , Wang H F , Chen X F and Yang Y . 2024 . Detection of earthquake-damaged buildings via UAV high-resolution remote sensing images . National Remote Sensing Bulletin , 28 ( 4 ): 911 - 925
周成江 , 王海峰 , 陈雪峰 , 杨扬 . 2024 . 无人机高分遥感图像检测震灾中损坏建筑物 . 遥感学报 , 28 ( 4 ): 911 - 925 [ DOI: 10.11834/jrs.20221569 http://dx.doi.org/10.11834/jrs.20221569 ]
相关文章
相关作者
相关机构
京公网安备11010802024621