A group object detection framework for remote sensing image object perception
- Vol. 28, Issue 7, Pages: 1802-1811(2024)
Received:30 June 2023,
Published:07 July 2024
DOI: 10.11834/jrs.20233263
移动端阅览


浏览全部资源
扫码关注微信
Received:30 June 2023,
Published:07 July 2024
移动端阅览
光学遥感是航天侦察和地质勘测中的常用技术,拍摄得到的可见光图像能够提供非常丰富的信息,在目标监视、态势预判等方面都具有重要应用。近年来以轮船、飞机等物体检测为代表的光学遥感图像目标感知取得了显著进展,但对于目标尺度变化大,目标数量多而小的遥感图像目标感知场景中还存在巨大技术挑战,也就是在当前的光学遥感图像目标感知场景存在很多目标小并且多目标集中的情况,容易导致误检和漏检。为了解决现有遥感图像目标检测算法不同目标独立检测的内在低效性,本文提出了一种新的检测框架,即群目标检测,以期通过检测群目标的状态信息来缓解单一目标感知信息不足、可靠性差等问题,进而得到更为可靠的多目标检测结果。本文首先对群目标的概念进行定义,然后基于该定义提出了一种群目标自动化标注方案,在公开数据集上对原有标签进行分析,无需任何手动标注,就能得到含有群目标标注的注释信息。基于群目标自动化标注,本文提出了群目标检测算法,即在检测群目标的同时,利用群目标的空间约束提升单一目标检测结果。实验证明,与近年来的遥感图像检测算法相比,本文提出的群目标检测在最热门的大型遥感目标检测数据集DOTA上验证时,性能最佳。
Optical remote sensing is a widely used technology in aerospace reconnaissance and geological exploration. Visible light images captured by this technology provide a wealth of information and have important applications in intelligence gathering
object monitoring
and situational forecasting. Considerable progress in remote sensing image object perception has been achieved
particularly in ship and airplane detection. However
technical challenges
including with large object-scale variations and numerous small objects
in remote sensing image object perception remain. Existing work has mainly focused on improving boundary box representations
and single-object detection models fail to fully exploit spatial correlation information from surrounding or similar objects. To address the inherent inefficiency of existing remote sensing image object detection algorithms that detect different objects independently
this paper proposes a novel detection framework called group object detection. By detecting the state information of a group object
our framework alleviates problems
such as insufficient perception information and poor reliability of single-object perception
generating reliable multi-object detection results. This paper introduces a concept of group objects and proposes an automated annotation scheme for group objects. By analyzing existing labels on a public dataset
the proposed scheme obtains annotated information with group object labels without manual annotation. Based on the automated annotation of group targets
a group target detection algorithm is presented
which enhances single-object detection results by utilizing the spatial constraints of group objects. Experimental results on the DOTA dataset
a widely-used remote sensing object detection benchmark
demonstrate that the proposed group target detection algorithm outperforms state-of-the-art methods.
Azimi S M , Vig E , Bahmanyar R , Körner M and Reinartz P . 2019 . Towards multi-class object detection in unconstrained remote sensing imagery // Proceedings of the 14th Asian Conference on Computer Vision . Perth : Springer: 150 - 165 [ DOI: 10.1007/978-3-030-20893-6_10 http://dx.doi.org/10.1007/978-3-030-20893-6_10 ]
Chen X L , Zhao H M , Li P X and Yin Z Y . 2006 . Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes . Remote Sensing of Environment , 104 ( 2 ): 133 - 146 [ DOI: 10.1016/j.rse.2005.11.016 http://dx.doi.org/10.1016/j.rse.2005.11.016 ]
Ding J , Xue N , Long Y , Xia G S and Lu Q K . 2019 . Learning RoI transformer for oriented object detection in aerial images // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach : IEEE: 2844 - 2853 [ DOI: 10.1109/CVPR.2019.00296 http://dx.doi.org/10.1109/CVPR.2019.00296 ]
Ding J , Xue N , Xia G S , Bai X , Yang W , Yang M Y , Belongie S , Luo J B , Datcu M , Pelillo M and Zhang L P . 2022 . Object detection in aerial images: a large-scale benchmark and challenges . IEEE Transactions on Pattern Analysis and Machine Intelligence , 44 ( 11 ): 7778 - 7796 [ DOI: 10.1109/TPAMI.2021.3117983 http://dx.doi.org/10.1109/TPAMI.2021.3117983 ]
Girshick R . 2015 . Fast R-CNN // Proceedings of the IEEE International Conference on Computer Vision . Santiago : IEEE: 1440 - 1448 [ DOI: 10.1109/ICCV.2015.169 http://dx.doi.org/10.1109/ICCV.2015.169 ]
Lenhart D , Hinz S , Leitloff J and Stilla U . 2008 . Automatic traffic monitoring based on aerial image sequences . Pattern Recognition and Image Analysis , 18 ( 3 ): 400 - 405 [ DOI: 10.1134/S1054661808030061 http://dx.doi.org/10.1134/S1054661808030061 ]
Li Q , Geng D , Zhang J F and Gong L X . 2022 . Application and trend analysis of remote sensing technology for earthquake emergency investigation . National Remote Sensing Bulletin , 26 ( 10 ): 1920 - 1934
李强 , 耿丹 , 张景发 , 龚丽霞 . 2022 . 面向地震应急调查的遥感应用现状及趋势分析 . 遥感学报 , 26 ( 10 ): 1920 - 1934 [ DOI: 10.11834/jrs.20210078 http://dx.doi.org/10.11834/jrs.20210078 ]
Lin T Y , Goyal P , Girshick R , He K M and Dollár P . 2017 . Focal loss for dense object detection // Proceedings of the IEEE International Conference on Computer Vision . Venice : IEEE: 2999 - 3007 [ DOI: 10.1109/ICCV.2017.324 http://dx.doi.org/10.1109/ICCV.2017.324 ]
Liu Y and Wu L Z . 2016 . Geological disaster recognition on optical remote sensing images using deep learning . Procedia Computer Science , 91 : 566 - 575 [ DOI: 10.1016/j.procs.2016.07.144 http://dx.doi.org/10.1016/j.procs.2016.07.144 ]
Lopez R and Frohn R . 2017 . Remote Sensing for Landscape Ecology: Monitoring, Modeling, and Assessment of Ecosystems . 2nd ed . Boca Raton : CRC Press [ DOI: 10.1201/9781315152714 http://dx.doi.org/10.1201/9781315152714 ]
Ming Q , Zhou Z Q , Miao L J , Zhang H W and Li L H . 2021 . Dynamic anchor learning for arbitrary-oriented object detection //Proceedings of the 35th AAAI Conference on Artificial Intelligence. [s.l. ] : AAAI: 2355 - 2363 [ DOI: 10.1609/aaai.v35i3.16336 http://dx.doi.org/10.1609/aaai.v35i3.16336 ]
Pan X J , Ren Y Q , Sheng K K , Dong W M , Yuan H L , Guo X W , Ma C Y and Xu C S . 2020 . Dynamic refinement network for oriented and densely packed object detection // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle : IEEE: 11204 - 11213 [ DOI: 10.1109/CVPR42600.2020.01122 http://dx.doi.org/10.1109/CVPR42600.2020.01122 ]
Ren S Q , He K M , Girshick R and Sun J . 2017 . Faster R-CNN: towards real-time object detection with region proposal networks . IEEE Transactions on Pattern Analysis and Machine Intelligence , 39 ( 6 ): 1137 - 1149 [ DOI: 10.1109/TPAMI.2016.2577031 http://dx.doi.org/10.1109/TPAMI.2016.2577031 ]
Tian Z Z , Zhang H W , Wang K , Liu S Q , Zou Q J , Zhao Z and Chen Y B . 2023 . Application of an improved CenterNet in remote sensing images object detection . National Remote Sensing Bulletin , 27 ( 12 ): 2706 - 2715
田壮壮 , 张恒伟 , 王坤 , 刘盛启 , 邹前进 , 赵镇 , 陈育斌 . 2023 . 改进CenterNet在遥感图像目标检测中的应用 . 遥感学报 , 27 ( 12 ): 2706 - 2715 [ DOI: 10.11834/jrs.20231638 http://dx.doi.org/10.11834/jrs.20231638 ]
Wang J W , Yang W , Li H C , Zhang H J and Xia G S . 2021 . Learning center probability map for detecting objects in aerial images . IEEE Transactions on Geoscience and Remote Sensing , 59 ( 5 ): 4307 - 4323 [ DOI: 10.1109/TGRS.2020.3010051 http://dx.doi.org/10.1109/TGRS.2020.3010051 ]
Xia G S , Bai X , Ding J , Zhu Z , Belongie S , Luo J B , Datcu M , Pelillo M and Zhang L P . 2018 . DOTA: a large-scale dataset for object detection in aerial images // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City : IEEE: 3974 - 3983 [ DOI: 10.1109/CVPR.2018.00418 http://dx.doi.org/10.1109/CVPR.2018.00418 ]
Yang X , Yan J C , Feng Z M and He T . 2021 . R3Det: refined single-stage detector with feature refinement for rotating object //Proceedings of the AAAI Conference on Artificial Intelligence. [s.l. ] : AAAI: 3163 - 3171 [ DOI: 10.1609/aaai.v35i4.16426 http://dx.doi.org/10.1609/aaai.v35i4.16426 ]
Yi R . 2020 . The research on digital media recommendation method based on K -means clustering algorithm . Journal of Changchun Institute of Technology (Natural Science Edition) , 21 ( 4 ): 99 - 102
易茹 . 2020 . 基于 K 均值聚类算法的数字媒体推荐方法研究 . 长春工程学院学报(自然科学版) , 21 ( 4 ): 99 - 102 [ DOI: 10.3969/j.issn.1009-8984.2020.04.020 http://dx.doi.org/10.3969/j.issn.1009-8984.2020.04.020 ]
Zhang G J , Lu S J and Zhang W . 2019 . CAD-Net: a context-aware detection network for objects in remote sensing imagery . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 12 ): 10015 - 10024 [ DOI: 10.1109/TGRS.2019.2930982 http://dx.doi.org/10.1109/TGRS.2019.2930982 ]
相关文章
相关作者
相关机构
京公网安备11010802024621