Enhanced visualization for the special illumination in lunar polar region
- Pages: 1-16(2023)
Published Online: 03 November 2023
DOI: 10.11834/jrs.20233334
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published Online: 03 November 2023 ,
扫 描 看 全 文
应申,毕杰皓,陈驰.XXXX.面向月球极区特殊光照条件的地形可视化.遥感学报,XX(XX): 1-16
YING Shen,BI Jiehao,Chen Chi. XXXX. Enhanced visualization for the special illumination in lunar polar region. National Remote Sensing Bulletin, XX(XX):1-16
月球极区因其特殊的地理位置与地形特征,太阳高度角较低,光照不充分,存在多处长期缺乏直接光照的永久阴影区。现有的影像数据阴影范围过大,导致形貌表现不完全,表现效果较差;若从高程数据出发,直接表现月球极区形貌,则会出现色彩与光影效果不自然、缺乏地形细节等问题。为了更好地开展月球极区的科学研究,行星制图中需要实现一套全面、高效的月球极区形貌可视化制图方法。本文结合高精度激光测高数据,通过晕渲可视化的方法制作晕渲地图,有效地表现月球极区的撞击坑、坑链、月溪等地貌,具有直观、详细、全面的特点。同时,在晕渲可视化地图的基础上进一步处理,如叠加永久阴影区要素,可得到更为清晰明了的专题地图。采用符合人类地理空间认知的月球极区可视化方法,将有助于月球极区科学问题的研究交流以及月球极区探测任务的开展。
Due to its special geographic location and topographic features
the lunar polar regions have low solar altitude angles and insufficient illuminations
and there are a number of permanently shadowed regions (PSR) that lack direct solar illumination all the time. These sites may contain large amounts of water ice and are therefore of both scientific importance and utilization. We often use visible-band imagery to visualize the topography of the lunar mid- and low-latitude regions
but this method is poorly effective in the lunar polar regions. Because the shadow range of the existing image data is too large
which leads to incomplete topographic representation and poor human understandings. If the planetary topography of the lunar polar region is directly represented from the elevation data
problems such as unnatural color and light effects and lack of topographic details will occur. Human's intuitive perceptions of the lunar surface mainly come from naked-eye optical observation
telescope optical photography
and remote sensing images from orbiting satellites
which largely shape our geospatial knowledge of the lunar landscape. Migrating these mature geospatial cognitions of the Moon to the lunar polar regions can effectively reduce the cost of understanding the lunar morphology. Therefore
in order to better carry out the scientific exploration on the lunar polar regions
a set of comprehensive
efficient
and human-cognitive-habit-suitable visualization mapping method of the lunar polar regions is needed. In this paper
we combine high-precision laser altimetry data with shading visualization method to create illumination maps
which effectively represent the impact craters
crater chains
rilles and other landforms in the lunar polar regions
and have the characteristics of intuition
detail and comprehensiveness. When visualization operation is carried out
the undulation of complex planetary landforms such as impact craters is comprehensively considered
and the topography is appropriately exaggerated
so that the absolute and relative elevations of the terrain can be reasonably expressed in the shading map. Such a planetary topographic map has a strong sense of three-dimensionality in the visual sense with clear light-shadow relationship
and the elevation expression has a better display effect even in the polar regions
without losing the details of the terrain
which can realize a more satisfactory effect of displaying the terrain features. In this paper
the large-scale topographic maps and local topographic details of the lunar polar regions are created by this method and compared with the corresponding remote sensing images. Moreover
further processes overlaying the permanently shadowed regions on the corresponding shading map can obtain a clearer thematic map. Orthorectified aerial view maps based on grayscale coloring of the elevation not only restores the real planetary topography
but also expresses the relationship between its absolute elevations and its relative height. Enhanced visualization of the lunar polar region aligns with human geospatial cognitions and can depict the topography of the lunar surface objectively and realistically
also this enhanced visualization strengthen the suitable geospatial planetary cognition of map users in accordance with human intentions and minds
which achieve better display effects of large-scale topography and small-scale terrain details. Such topographic shading maps are conducive to providing supports for landing site selection
rover path planning and exploration result display in the lunar polar regions.
行星制图月球探测月球极区地貌晕渲可视化
planetary cartographylunar explorationlunar polar regionshading mapvisualization
Bussey DBJ, Fristad KE, Shenk PM, et al. 2005. Constant illumination at the lunar north pole. Nature. 434,842. [DOI:10.1038/434842ahttp://dx.doi.org/10.1038/434842a]
Bussey DBJ, McGovern JA and Spudis PD, et al. 2010. Illumination conditions of the south pole of the Moon derived using Kaguya topography. Icarus, 208(2):558-564. [DOI:10.1016/j.icarus.2010.03.028http://dx.doi.org/10.1016/j.icarus.2010.03.028]
Cao C P. 2023. The Parameters Setting up in the Digital Wast-drawing. Bulletin of Surveying and Mapping. (05):17-19+37
曹纯贫. 2003. 数字地貌晕渲中若干参数的设置. 测绘通报. (05):17-19+37 [DOI:10.3969/j.issn.0494-0911.2003.05.005http://dx.doi.org/10.3969/j.issn.0494-0911.2003.05.005]
Cook AC, Watters TR and Robinson MS, et al. 2000. Lunar polar topography derived from Clementine stereoimages. Journal of Geophysical Research: Planets, 105(E5):12023-12033. [DOI:10.1029/1999JE001083http://dx.doi.org/10.1029/1999JE001083]
Creech S, Guidi J and Elburn D. 2022. Artemis: An Overview of NASA's Activities to Return Humans to the Moon. 2022 IEEE Aerospace Conference (AERO), 1-7. [DOI: 10.1109/AERO53065.2022.9843277http://dx.doi.org/10.1109/AERO53065.2022.9843277]
Crider DH, Vondrak RR. 2003. Space weathering effects on lunar cold trap deposits. Journal of Geophysical Research: Planets. 108(E7), 5079:. https://doi.org/10.1029/2002JE002030https://doi.org/10.1029/2002JE002030
Di KC, Liu B, Liu Z Q and Zou Y L. 2016. Review and prospect of lunar mapping using remote sensing data. Journal of Remote Sensing, 20(5): 1230–1242
邸凯昌, 刘斌, 刘召芹, 邹永廖. 2016. 月球遥感制图回顾与展望. 遥感学报, 20(5): 1230–1242 [DOI:10.11834/jrs20166158http://dx.doi.org/10.11834/jrs20166158]
Dhillon A. 2023. India lands spacecraft near south pole of moon in historic first. The Guardian. [2023-09-08]. https://amp.theguardian.com/science/2023/aug/23/india-chandrayaan-3-moon-landing-missionhttps://amp.theguardian.com/science/2023/aug/23/india-chandrayaan-3-moon-landing-mission
Feldman WC, Maurice S and Lawrence DJ, et al. 2001. Evidence for water ice near the lunar poles. Journal of Geophysical Research: Planets. 106(E10):23231-23252. [DOI:10.1029/2000JE001444http://dx.doi.org/10.1029/2000JE001444]
Fisher EA, Lucey PG and Lemelin M, et al. 2017. Evidence for surface water ice in the lunar polar regions using reflectance measurements from the Lunar Orbiter Laser Altimeter and temperature measurements from the Diviner Lunar Radiometer Experiment. Icarus. 292:74–85. [DOI:10.1016/j.icarus.2017.03.023http://dx.doi.org/10.1016/j.icarus.2017.03.023]
Guo QS, Wang XY. 2004. Study on Light Direction and Color in Hill-Shading. Geomatics and Information Science of Wuhan University. (01):20-23+33.
郭庆胜, 王晓延. 2004. 地貌晕渲中光源使用方法与用色规则的研究. 武汉大学学报(信息科学版), (01):20-23+33 [DOI: 10.3321/j.issn:1671-8860.2004.01.004http://dx.doi.org/10.3321/j.issn:1671-8860.2004.01.004]
Heldmann J, Margarita M. Marinova M,et al. 2022. Mission Architecture Using the SpaceX Starship Vehicle to Enable a Sustained Human Presence on Mars. New Space. Sep. 259-273. [DOI:10.1089/space.2020.0058http://dx.doi.org/10.1089/space.2020.0058]
Hemingway DJ, Garrick-Bethell I and Kreslavsky MA. 2015. Latitudinal variation in spectral properties of the lunar maria and implications for space weathering. Icarus. 261:66–79. [DOI:10.1016/j.icarus.2015.08.004http://dx.doi.org/10.1016/j.icarus.2015.08.004]
Kovesi P. 2019. Colour amplifies relief shading. ASEG Extended Abstracts. 2019:1–3. [DOI:10.1080/22020586.2019.12073048http://dx.doi.org/10.1080/22020586.2019.12073048]
Li C L, Liu J J and Ren X. 2018. Lunar Global High-precision Terrain Reconstruction Based on Chang'e-2 Stereo Images. Geomatics and Information Science of Wuhan University. 43(04):485-495
李春来, 刘建军, 任鑫等. 2018. 基于嫦娥二号立体影像的全月高精度地形重建. 武汉大学学报(信息科学版) ,43(04):485-495 [DOI:10.13203/j.whugis20170400http://dx.doi.org/10.13203/j.whugis20170400]
Li XY, Wang SJ, Zheng YC, et al. 2008. Estimation of solar illumination on the Moon: A theoretical model. Planetary & Space Science, 56(7):947-950. [DOI:10.1016/j.pss.2008.02.008http://dx.doi.org/10.1016/j.pss.2008.02.008]
Mazarico E, Neumann GA and Smith DE, et al. 2011. Illumination conditions of the lunar polar regions using LOLA topography. Icarus. 211:1066–1081. [DOI:10.1016/j.icarus.2010.10.030http://dx.doi.org/10.1016/j.icarus.2010.10.030]
Oren M, Nayar SK. 1995. Generalization of the Lambertian model and implications for machine vision. International Journal of Computer Vision. 14(3):227–251. [DOI:10.1007/BF01679684http://dx.doi.org/10.1007/BF01679684]
Ouyang Z. 2005. Introduction to Lunar Science. Beijing: China Astronotic Publishing House
欧阳自远. 2005. 月球科学概论. 北京: 中国宇航出版社
Phong B T. 1998. Illumination for Computer Generated Pictures. Communications of the ACM. 18(6):311-317. [DOI:10.1145/360825.360839http://dx.doi.org/10.1145/360825.360839]
Sjogren WL, Wollenhaupt WR. 1973. Lunar Shape via the Apollo Laser Altimeter. Science. 179,275-278. [DOI:10.1126/science.179.4070.275http://dx.doi.org/10.1126/science.179.4070.275]
Smith DE, Zuber MT and Neumann GA, et al. 2010. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophysical Research Letters. 37:L18204. [DOI:10.1029/2010GL043751http://dx.doi.org/10.1029/2010GL043751]
Smith DE, Zuber MT and Neumann GA, et al. 2017. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit. Icarus. 283:70–91. [DOI:10.1016/j.icarus.2016.06.006http://dx.doi.org/10.1016/j.icarus.2016.06.006]
Wang J Y, Shu R, Chen W B, et al. 2010. Laser altimeter on board Chang'e-1 satellite. Scientia Sinica:Physica, Mechanica & Astronomica. 40(08):1063-1070
王建宇, 舒嵘, 陈卫标等. 2010. 嫦娥一号卫星载激光高度计. 中国科学:物理学 力学 天文学. 40(08):1063-1070 [DOI:10.1360/2010-40-8-1063http://dx.doi.org/10.1360/2010-40-8-1063]
Wang P Y and Guan X. 2021. Hybrid enhanced visual cognition framework and its key technologies. Journal of Image and Graphics,26(11):2619-2629
王培元,关欣. 2021. 混合增强视觉认知架构及其关键技术进展. 中国图象图形学报,26(11):2619-2629 [DOI:10. 11834/jig. 200446http://dx.doi.org/10.11834/jig.200446]
Wu B , Hu H , Guo J . 2014. Integration of Chang'E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling. Earth & Planetary Science Letters, 391:1-15.[DOI:10.1016/j.epsl.2014.01.023http://dx.doi.org/10.1016/j.epsl.2014.01.023]
Wu W R, Yu D Y, Wang C, er al. 2020. Research on the main scientific and technological issues on lunar polar exploration. Journal of Deep Space Exploration. 7(03):223-231+240
吴伟仁,于登云,王赤等. 2020. 月球极区探测的主要科学与技术问题研究. 深空探测学报(中英文), 7(03):223-231+240 [DOI:10.15982/j.issn.2095-7777.2020.20200113001http://dx.doi.org/10.15982/j.issn.2095-7777.2020.20200113001]
Ying S, Dou X Y, Bi J H and Chen Chi. 2023. Cognition and Enhanced Visualization of Lunar Topographic Features. Geomatics and Information Science of Wuhan University. 48:453–462
应申, 窦小影, 毕杰皓, 陈驰. 2023. 月球地形特征认识及增强可视化. 武汉大学学报(信息科学版) 48:453–462 [DOI:10.13203/j.whugis20220069http://dx.doi.org/10.13203/j.whugis20220069]
Zhang Z, Xu H P, Deng X Y, et al. 2022. Overall scheme and key technologies of new generation lunar manned launch vehicle. Manned Spaceflight. 28(04):427-432
张智,徐洪平,邓新宇等. 2022. 新一代载人登月运载火箭总体方案和关键技术.载人航天. 28(04):427-432 [DOI:10.16329/j.cnki.zrht.2022.04.001http://dx.doi.org/10.16329/j.cnki.zrht.2022.04.001]
Zhou H, Chen Y and Hyyppä J, et al.2017. An overview of the laser ranging method of space laser altimeter. Infrared Physics & Technology. 86:147–158. [DOI:10.1016/j.infrared.2017.09.011http://dx.doi.org/10.1016/j.infrared.2017.09.011]
相关文章
相关作者
相关机构