Validations of the HY-1C COCTS remote sensing reflectance products in coastal waters
- Vol. 27, Issue 1, Pages: 14-25(2023)
Received:13 January 2022,
Published:07 January 2023
DOI: 10.11834/jrs.20235004
移动端阅览


浏览全部资源
扫码关注微信
Received:13 January 2022,
Published:07 January 2023
移动端阅览
中国HY-1C卫星水色水温扫描仪(COCTS)从2018年9月发射至今已积累了大量的全球观测数据,本文利用AERONET-OC实测数据集对COCTS近海水体遥感反射率(
R
rs)产品进行了真实性检验。本文对实测光谱数据集进行归一化处理,按光谱特征分为A(清洁)、B(比较清洁)、C(轻微浑浊)、D(比较浑浊)这4种光学水体类型,对COCTS
R
rs产品在这4类水体的精度进行评价。结果表明:COCTS反演
R
rs在A、B两种水体类型中存在轻微高估(平均绝对百分比误差APD(Average absolute Percent Difference)分别为38.79%、44.44%),在C类水体轻微低估(APD=40.85%),而在D类水体显著低估(APD=47.14%)。COCTS不同波段
R
rs产品在4类水体的精度亦存在差异,其中412 nm、443 nm波段在A类水体中和实测数据一致性相对较好(APD均小于30%);520 nm、565 nm波段在C、D两类水体中和实测数据一致性相对较好(APD均小于30%);670 nm波段在4种水体均呈现显著低估。由于AERONET-OC波段和COCTS存在差异,可能会导致评估误差存在高估,未来需要使用连续光谱的实测数据进一步评价COCTS产品精度。
A large number of global observation data was obtained by HY-1C COCTS since its launch in September 2018. The comprehensive evaluation of the HY-1C/COCTS products is important for further applications. In this study
we used the global in-situ data from AERONET-OC to evaluate the performance of the remote sensing reflectance (
R
rs) products of the HY-1C COCTS. Firstly
the AERONET-OC dataset were divided into four optical water types (A
clean water; B
relatively clean water; C
slightly turbid water; D
turbid water) based on a spectral normalization method. Secondly
the AERONET-OC
R
rs data and HY-1C/COCTS retrieved
R
rs data were matched according to the defined spatial-temporal windows (5×5 box and 1 hour). Finally
the performances of the HY-1C/COCTS
R
rs products were quantitatively evaluated in the four optical water types. As a result
good correlation between satellite and in-situ
R
rs data was indicated as R values among four types water ranged from 0.680 to 0.879. In type A water
the relatively good consistency between satellite and in-situ
R
rs data was observed as average percent difference (PD) at 6.79%
and the average absolute percent difference (APD) at 38.79%. In type B water
slight overestimation of satellite data occurred with PD at 18.73% and APD less than 45%. Underestimation of satellite data was reported in type C water
as negative remote sensing
R
rs data in 412 nm and 443 nm bands were with PD at -14.38% and APD at 47.14%. Similarly
in type D water
negative
R
rs in 412 nm and 443 nm bands were with PD at -32.35%
and APD at 47.14%
indicating significant underestimation from the satellite data. In addition
difference of accuracy performance of
R
rs products in different bands of COCTS for four water types was also observed.
R
rs presented good consistency between in situ and COCTS data in band 412 nm and 443 nm for type A water. Better consistency in band 520 nm and 565 nm was observed for type C
D water than type A water while significant underestimation of COCTS
R
rs were reported in all four types of water compared to in situ data. Overall
COCTS and in situ
R
rs data showed good consistency in clean water
but remained relatively inconsistent in turbid water. Our results also reported that the COCTS inversed
R
rs products are slightly overestimated compared with the AERONET-OC in situ data in type A and B water. In contrast
COCTS products slightly underestimated
R
rs for type C water but significantly underestimated for type D water. Attention should also be paid to enlarge the evaluated errors
as the AERONET-OC in-situ spectral data was linearly interpolated to match COCTS band. In the future
the hyperspectral in-situ
R
rs data should be used to further evaluate the performance of COCTS.
Bailey S W and Werdell P J . 2006 . A multi-sensor approach for the on-orbit validation of ocean color satellite data products . Remote Sensing of Environment , 102 ( 1/2 ): 12 - 23 [ DOI: 10.1016/j.rse.2006.01.015 http://dx.doi.org/10.1016/j.rse.2006.01.015 ]
Balasubramanian S V , Pahlevan N , Smith B , Binding C , Schalles J , Loisel H , Gurlin D , Greb S , Alikas K , Randla M , Bunkei M , Moses W , Nguyễn H , Lehmann M K , O'Donnell D , Ondrusek M , Han T H , Fichot C G , Moore T and Boss E . 2020 . Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters . Remote Sensing of Environment , 246 : 111768 [ DOI: 10.1016/j.rse.2020.111768 http://dx.doi.org/10.1016/j.rse.2020.111768 ]
Barnes B B , Cannizzaro J P , English D C and Hu C M . 2019 . Validation of VIIRS and MODIS reflectance data in coastal and oceanic waters: an assessment of methods . Remote Sensing of Environment , 220 : 110 - 123 [ DOI: 10.1016/j.rse.2018.10.034 http://dx.doi.org/10.1016/j.rse.2018.10.034 ]
Chen S G , Du K P , Lee Z , Liu J Q , Song Q J , Xue C , Wang D S , Lin M S , Tang J W and Ma C F . 2021 . Performance of COCTS in global ocean color remote sensing . IEEE Transactions on Geoscience and Remote Sensing , 59 ( 2 ): 1634 - 1644 [ DOI: 10.1109/TGRS.2020.3002460 http://dx.doi.org/10.1109/TGRS.2020.3002460 ]
Fan W L , Huang X X and Fu Y T . 2022 . Infrared information acquisition technology of Chinese ocean color and temperature scanner of HY-1 satellite . National Remote Sensing Bulletin , 26 ( 8 ): 1589 - 1601
范文龙 , 黄小仙 , 傅雨田 . 2022 . 海洋一号卫星水色水温扫描仪红外信息获取 . 遥感学报 , 26 ( 8 ): 1589 - 1601 [ DOI: 10.11834/jrs.20210071 http://dx.doi.org/10.11834/jrs.20210071 ]
Harding L W , Magnuson A and Mallonee M E . 2005 . SeaWiFS retrievals of chlorophyll in Chesapeake Bay and the mid-Atlantic bight . Estuarine, Coastal and Shelf Science , 62 ( 1/2 ): 75 - 94 [ DOI: 10.1016/j.ecss.2004.08.011 http://dx.doi.org/10.1016/j.ecss.2004.08.011 ]
Hernández W J , Ortiz-Rosa S , Armstrong R A , Geiger E F , Eakin C M and Warner R A . 2020 . Quantifying the effects of hurricanes Irma and Maria on coastal water quality in Puerto Rico using moderate resolution satellite sensors . Remote Sensing , 12 ( 6 ): 964 [ DOI: 10.3390/rs12060964 http://dx.doi.org/10.3390/rs12060964 ]
Hlaing S , Harmel T , Gilerson A , Foster R , Weidemann A , Arnone R , Wang M H and Ahmed S . 2013 . Evaluation of the VIIRS ocean color monitoring performance in coastal regions . Remote Sensing of Environment , 139 : 398 - 414 [ DOI: 10.1016/j.rse.2013.08.013 http://dx.doi.org/10.1016/j.rse.2013.08.013 ]
Kyryliuk D and Kratzer S . 2019 . Evaluation of Sentinel-3A OLCI products derived using the Case-2 regional coastcolour processor over the Baltic Sea . Sensors , 19 ( 16 ): 3609 [ DOI: 10.3390/s19163609 http://dx.doi.org/10.3390/s19163609 ]
Ladner S D , Arnone R , Vandermeulen R , Martinolich P , Lawson A , Bowers J , Crouti R , Ondrusek M and Fargion G . 2014 . Inter-satellite comparison and evaluation of Navy SNPP VIIRS and MODIS-Aqua ocean color properties // Proceedings Volume 9111, Ocean Sensing and Monitoring VI . Baltimore, Maryland : SPIE [ DOI: 10.1117/12.2053060 http://dx.doi.org/10.1117/12.2053060 ]
Li T J . 2012 . China offshore marine: marine optical properties and remote sensing . Beijing : China Ocean Press : 193 - 196
李铜基 . 2012 . 中国近海海洋: 海洋光学特性与遥感 . 北京 : 海洋出版社 : 193 - 196
Liu H Z , He X Q , Li Q Q , Hu X J , Ishizaka J , Kratzer S , Yang C , Shi T Z , Hu S B , Zhou Q M and Wu G F . 2022 . Evaluation of ocean color atmospheric correction methods for Sentinel-3 OLCI using global automatic in situ observations . IEEE Transactions on Geoscience and Remote Sensing , 60 : 1 - 19 [ DOI: 10.1109/TGRS.2021.3136243 http://dx.doi.org/10.1109/TGRS.2021.3136243 ]
Liu M , Guan L , Liu J , Song Q , Ma C , Li N . 2021 . First Assessment of HY-1C COCTS Thermal Infrared Calibration Using MetOp-B IASI . Remote Sensing . 13 ( 4 ): 635 . [ DOI: 10.3390/rs13040635 http://dx.doi.org/10.3390/rs13040635 ]
Shen Y F , Liu J Q , Ding J , Jiao J N , Sun S J and Lu Y C . 2020 . HY-1C COCTS and CZI observation of marine oil spills in the South China Sea . Journal of Remote Sensing , 24 ( 8 ): 933 - 944
沈亚峰 , 刘建强 , 丁静 , 焦俊男 , 孙绍杰 , 陆应诚 . 2020 . 海洋一号C星光学载荷对海面溢油的识别能力分析 . 遥感学报 , 24 ( 8 ): 933 - 944 [ DOI: 10.11834/jrs.20209475 http://dx.doi.org/10.11834/jrs.20209475 ]
Song Q J , Chen S G , Xue C , Lin M S , Du K P , Li S C , Ma C F , Tang J W , Liu J Q , Zhang T L and Huang X X . 2019 . Vicarious calibration of COCTS-HY1C at visible and near-infrared bands for ocean color application . Optics Express , 27 ( 20 ): A1615 - A1626 [ DOI: 10.1364/OE.27.0A1615 http://dx.doi.org/10.1364/OE.27.0A1615 ]
Thuillier G , Hersé M , Labs D , Foujols T , Peetermans W , Gillotay D , Simon P C and Mandel H . 2003 . The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the Atlas and Eureca Missions . Solar Physics , 214 ( 1 ): 1 - 22 [ DOI: 10.1023/A:1024048429145 http://dx.doi.org/10.1023/A:1024048429145 ]
Wang M H , Liu X M , Jiang L D , Son S , Sun J Q , Shi W , Tan L Q , Naik P , Mikelsons K , Wang X L and Lance V . 2014 . Evaluation of VIIRS ocean color products // Proceedings Volume 9261, Ocean Remote Sensing and Monitoring from Space . Beijing : SPIE [ DOI: 10.1117/12.2069251 http://dx.doi.org/10.1117/12.2069251 ]
Wang S L , Li J S , Zhang B , Spyrakos E , Tyler A N , Shen Q , Zhang F F , Kuster T , Lehmann M K , Wu Y H and Peng D L . 2018 . Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index . Remote Sensing of Environment , 217 : 444 - 460 [ DOI: 10.1016/j.rse.2018.08.026 http://dx.doi.org/10.1016/j.rse.2018.08.026 ]
Wei J W , Lee Z and Shang S L . 2016 . A system to measure the data quality of spectral remote-sensing reflectance of aquatic environments . Journal of Geophysical Research : Oceans , 121 ( 11 ): 8189 - 8207 [ DOI: 10.1002/2016JC012126 http://dx.doi.org/10.1002/2016JC012126 ]
Xu Y Zh , He X Q , Bai Y , Wang D F , Zhu Q K and Ding X S . 2021 . Evaluation of remote-sensing reflectance products from multiple ocean color missions in highly turbid water (hangzhou bay) . Remote Sensing , 13 ( 21 ): 4267 [ DOI : 10.3390/rs13214267 http://dx.doi.org/10.3390/rs13214267 ]
Zhong S K , Lyu H , Yang Z Q , Li Y Y , Xu J F and Miao S . 2022 . Remote sensing estimation method of organic suspended matter concentration in inland lakes based on Sentinel-3 OLCI data . National Remote Sensing Bulletin , 26 ( 1 ): 155 - 167
仲苏珂 , 吕恒 , 杨子谦 , 李杨杨 , 许佳峰 , 苗松 . 2022 . Sentinel-3 OLCI数据的内陆湖泊有机悬浮物浓度遥感估算 . 遥感学报 , 26 ( 1 ): 155 - 167 [ DOI: 10.11834/jrs.20221266 http://dx.doi.org/10.11834/jrs.20221266 ]
Zibordi G , Holben B , Mélin F , D'Alimonte D , Berthon J F , Slutsker I and Giles D . 2010 . AERONET-OC: an overview . Canadian Journal of Remote Sensing , 36 ( 5 ): 488 - 497 [ DOI: 10.5589/m10-073 http://dx.doi.org/10.5589/m10-073 ]
Zibordi G , Mélin F and Berthon J F . 2018 . A regional assessment of OLCI data products . IEEE Geoscience and Remote Sensing Letters , 15 ( 10 ): 1490 - 1494 [ DOI: 10.1109/LGRS.2018.2849329 http://dx.doi.org/10.1109/LGRS.2018.2849329 ]
Zibordi G , Mélin F , Berthon J F , Holben B , Slutsker I , Giles D , D'Alimonte D , Vandemark D , Feng H , Schuster G , Fabbri B E , Kaitala S and Seppälä J . 2009 . AERONET-OC: a network for the validation of ocean color primary products . Journal of Atmospheric and Oceanic Technology , 26 ( 8 ): 1634 - 1651 [ DOI: 10.1175/2009JTECHO654.1 http://dx.doi.org/10.1175/2009JTECHO654.1 ]
Zibordi G , Strömbeck N , Mélin F and Berthon J F . 2006 . Tower-based radiometric observations at a coastal site in the Baltic Proper . Estuarine, Coastal and Shelf Science , 69 ( 3/4 ): 649 - 654 [ DOI: 10.1016/j.ecss.2006.05.022 http://dx.doi.org/10.1016/j.ecss.2006.05.022 ]
相关作者
相关机构
京公网安备11010802024621