Models and Methods | Views : 0 下载量: 704 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • A method for reconstructing long-term daily resolution EVIs based on MODIS daily surface reflectance products

    • A study on vegetation indices has made significant progress. This study proposes a daily resolution EVI reconstruction method based on MODIS daily surface reflectance products to address the issue of a large number of missing pixels in Enhanced Vegetation Index (EVI) caused by low temporal resolution and cloud coverage. By combining MVC (Maximum Value Composite) with HANTS (Harmonic Analysis of Time Series) algorithm, the daily resolution EVI time series data of the Huang Huai Hai Plain in 2021 was successfully reconstructed. The research results indicate that this reconstruction algorithm can not only be used for the reconstruction of large-scale and long-term daily resolution EVI time series data, but also the reconstruction results have rich texture, filling in a large number of missing pixels in the original EVI and removing noise from the original EVI data. Compared with the S-G filtering method, the reconstructed EVI using the HANTS algorithm shows advantages in spatial distribution rationality and fidelity. The average annual R2 and RMSE between the reconstructed EVI and high-quality EVI pixels are 0.94 and 0.024, respectively, which are better than the S-G method's 0.73 and 0.093. This study provides new ideas and technological approaches for generating high temporal resolution EVI, which has important application value in fields such as vegetation monitoring and ecological assessment.
    • Vol. 28, Issue 4, Pages: 969-980(2024)   

      Received:04 May 2023

      Published:07 April 2024

    • DOI: 10.11834/jrs.20243141     

    移动端阅览

  • Wang N, Tian J and Tian Q J. 2024. A method for reconstructing long-term daily resolution EVIs based on MODIS daily surface reflectance products. National Remote Sensing Bulletin, 28(4):969-980 DOI: 10.11834/jrs.20243141.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

王伶俐 北京师范大学地表过程与资源生态国家重点实验室;北京师范大学资源学院
朱文泉 北京师范大学地表过程与资源生态国家重点实验室;北京师范大学资源学院
姜楠 北京师范大学地表过程与资源生态国家重点实验室;北京师范大学资源学院
牟敏杰 北京师范大学地表过程与资源生态国家重点实验室;北京师范大学减灾与应急管理研究院
刘建红 北京师范大学地表过程与资源生态国家重点实验室;北京师范大学资源学院
Tao ZHONG 中国科学院空天信息创新研究院 遥感科学国家重点实验室;中国科学院大学 资源与环境学院
Hualiang LIU 中国科学院空天信息创新研究院 遥感科学国家重点实验室;北京大学 遥感与地理信息系统研究所
Man ZHU 中国科学院空天信息创新研究院 遥感科学国家重点实验室;中国科学院大学 资源与环境学院

相关机构

北京师范大学地表过程与资源生态国家重点实验室
北京师范大学资源学院
北京师范大学减灾与应急管理研究院
Aerospace Information Research Institute, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
College of Resources and Environment, University of Chinese Academy of Sciences
0