Assessment of Sustainable Development Goal 6 (SDG6) for Hainan Island
- Pages: 1-12(2024)
Published Online: 02 January 2024
DOI: 10.11834/jrs.20243239
移动端阅览
浏览全部资源
扫码关注微信
Published Online: 02 January 2024 ,
移动端阅览
韩志婷,廖静娟,张丽.XXXX.海南岛可持续发展目标六(SDG6)评估.遥感学报,XX(XX): 1-12
HAN Zhiting,LIAO Jingjuan,ZHANG Li. XXXX. Assessment of Sustainable Development Goal 6 (SDG6) for Hainan Island. National Remote Sensing Bulletin, XX(XX):1-12
水资源的可持续发展(SDG 6)是联合国其他目标能够实现可持续发展的基础。海南岛地处热带,拥有丰富的海水资源,但是淡水资源环境却比较脆弱。本文基于联合国可持续发展评估体系,结合海南岛的实际情况,对可持续发展目标六的指标进行本地化,收集市县两级的统计数据和遥感数据,引入 Co$ting Nature 生态系统服务模型中的自然水质足迹(NFWQ)指标,构建更完善的可持续发展评估框架。通过对海南岛市县的评估发现:(1)SDG指数得分(0-100分)表明,海南岛的可持续发展水平得到了显著提高,2015 - 2021年,海南岛大部分市县SDG 6得分呈螺旋式上升趋势。(2)2015 - 2021年,在18个市县中,省会海口市和旅游城市三亚市的SDG 6 指数总得分最高。屯昌县、五指山市和琼中黎族苗族自治县的增长速度排名前三,分别为:91.4%、74.2%和73%。(3)海南岛整体SDG 6发展水平分布不均匀,呈现出中东部高、南北稳定、西部低的空间格局。本文引入的生态系统服务指标和海南岛市县级的本土化评价体系,为海南省落实国家“十四五”规划,打赢“六水共治”攻坚战提供决策支持。
The sustainable development of water resources (SDG 6) is the foundation on which other United Nations goals can be realized. Hainan Island
located in a tropical region
has abundant seawater resources
but the freshwater resources environment is relatively fragile. Based on the United Nations Sustainable Development Assessment System (SDAS) and the actual situation of Hainan Island
this paper localized the indicators of SDG 6
collected statistical data and remote sensing data at the city and county levels
and introduced the natural water quality footprint (NFWQ) indicators in the Co$ting Nature ecosystem service model to construct a more complete sustainable development assessment framework. The assessment of the cities and counties on Hainan Island found that
firstly
the SDG index scores (0-100 points) indicate that the level of sustainable development on Hainan Island has been significantly improved
and that most of the cities and counties on Hainan Island showed a spiral upward trend in their SDG 6 scores in 2015 - 2021. Secondly
among the 18 cities and counties
Haikou
the provincial capital
and Sanya
a tourist city
had the highest total SDG 6 index scores in 2015 - 2021. Tunchang County
Wuzhishan City and Qiongzhong Li and Miao Autonomous County ranked the top three in terms of growth rate
with 91.4%
74.2% and 73%
respectively. Thirdly
the overall SDG 6 development level of Hainan Island is unevenly distributed
showing a spatial pattern of high in the central-east
stable in the north and south
and low in the west. The ecosystem service indicators introduced in this paper and the localized evaluation system at the city and county levels of Hainan Island provide decision support for Hainan Province to implement the National Fourteenth Five-Year Plan and win the campaign of "Six Waters Joint Governance ".
可持续发展目标6自然水质足迹(NFWQ)评估海南岛
SDG 6Natural Footprint on Water Quality (NFWQ)AssessmentHainan Island
Allen C, Nejdawi R, El-Baba J, et al. 2017. Indicator-based assessments of progress towards the sustainable development goals (SDGs): a case study from the Arab region. Sustainability Science, 12: 975-989. [DOI:10.1007/s11625-017-0437-1http://dx.doi.org/10.1007/s11625-017-0437-1]
Bhaduri A, Bogardi J, Siddiqi A, et al. 2016. Achieving sustainable development goals from a water perspective. Frontiers in Environmental Science, 4(21): 64. [DOI 10.3389/fenvs.2016.00064http://dx.doi.org/10.3389/fenvs.2016.00064]
Chen C, Zhao Y H, Hao C X. 2021. Analysisi on 2020 Global Environmental Performance Index Report and Suggestions. Environmental Protection, 49(2):69-74.
陈晨, 赵元浩, 郝春旭. 2021. 2020 年可持续发展目标生态环境领域指标分析与建议. 环境保护, 49(2):69-74. [DOI:10.14026/j.cnki.0253-9705.2021.02.013http://dx.doi.org/10.14026/j.cnki.0253-9705.2021.02.013]
Chen J, Gao M, Ma K, et al. 2020. Different effects of technological progress on China's carbon emissions based on sustainable development. Business Strategy and the Environment, 29(2): 481-492. [DOI:10.1002/bse.2381http://dx.doi.org/10.1002/bse.2381]
Choi H A, Song C, Lee W K, et al. 2018. Integrated approaches for national ecosystem assessment in South Korea. KSCE Journal of Civil Engineering, 22(2): 1634-1641. [DOI:10.1007/s12205-017-1664-9http://dx.doi.org/10.1007/s12205-017-1664-9]
Feng X M, Liu Q L, Yin L C, et al. 2018. Linking water research with the sustainability of the human–natural system. Current Opinion in Environmental Sustainability, 33: 99-103. [DOI:10.1016/j.cosust.2018.05.012http://dx.doi.org/10.1016/j.cosust.2018.05.012]
Gao B, Xu Y P, Wang Q, et al. 2017. Effects of land use changes on water quality of the plain area in Taihu Basin. Journal of Agro-Environment Science, 36(6): 1186-1191.
高斌, 许有鹏, 王强, 等. 2017. 太湖平原地区不同土地利用类型对水质的影响 . 农业环境科学学报, 36(6): 1186-1191.[DOI:10.11654/jaes.2016-1511http://dx.doi.org/10.11654/jaes.2016-1511]
Garrick D E, Hall J W, Dobson A, et al. 2017. Valuing water for sustainable development. Science, 358(6366): 1003-1005. [DOI:10.1126/science.aao4942http://dx.doi.org/10.1126/science.aao4942]
Green P A, Vörösm21arty C J, Harrison I, et al. 2015. Freshwater ecosystem services supporting humans: Pivoting from water crisis to water solutions. Global Environmental Change, 34: 108-118. [DOI:10.1016/j.gloenvcha.2015.06.007http://dx.doi.org/10.1016/j.gloenvcha.2015.06.007]
Harrison I J, Green P A, Farrell T A, et al. 2016. Protected areas and freshwater provisioning: a global assessment of freshwater provision, threats and management strategies to support human water security. Aquatic Conservation: Marine and Freshwater Ecosystems, 26(S1): 103-120. [DOI:10.1002/aqc.2652http://dx.doi.org/10.1002/aqc.2652]
Hainan Provincial Bureau of Statistics. 2022. Hainan Island Statistical Yearbook. Beijing: China Statistics Press
海南省统计局. 2022. 海南岛统计年鉴. 北京: 中国统计出版社.
Hainan Academy of Environmental Sciences. 2023. Spatial distribution dataset of ecosystem types in Hainan, 2000-2020.(海南省环境科学研究院. 2023. 2000-2020年海南生态系统类型空间分布数据集.) https://data.casearth.cn/thematic/hainan/233https://data.casearth.cn/thematic/hainan/233.
Hemati T, Pourebrahim S, Monavari M, et al. 2020. Species-specific nature conservation prioritization (a combination of MaxEnt, Co$ting Nature and DINAMICA EGO modeling approaches). Ecological Modelling, 429(3): 109093. [DOI:10.1016/j.ecolmedel.2020.109093http://dx.doi.org/10.1016/j.ecolmedel.2020.109093]
Herrera D, Ellis A, Fisher B, et al. 2017. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nature Communications, 8(1): 811. [DOI:10.1038/s41467-017-00775-2http://dx.doi.org/10.1038/s41467-017-00775-2]
Hao J. 2021. Study on the spatial differentiation pattern and influencing factors of the level of human sustainable development in China. Jilin University. Changchun.
郝辑. 2021. 中国人类可持续发展水平的空间分异格局与影响因素研究. 吉林大学. 长春.博士学位论文.
Ionescu G H, Jianu E, Patrichi I C, et al. 2021. Assessment of Sustainable Development Goals (SDG) implementation in Bulgaria and future developments. Sustainability, 13(21): 12000. [DOI:10.3390/su132112000http://dx.doi.org/10.3390/su132112000]
Li L B. 2019. Estimation of available quantity of water resources in Hainan Island. Water Resources Informatization, 6: 38-44.
李龙兵. 2019. 海南岛水资源可利用量估算 . 水利信息化, 6: 38-44.[DOI:10.19364/j.1674-9405.2019.06.007http://dx.doi.org/10.19364/j.1674-9405.2019.06.007]
Li J S. Wang S L.2022. 10m inland water ecological remote sensing monitoring dataset of Hainan Island, 2019-2021 (FUI, transparency, nutritional status.(李俊生, 王胜蕾. 2022. 2019-2021年海南岛10m内陆水生态遥感监测数据集(FUI、透明度、营养状态).)https://data.casearth.cn/thematic/hainan/233https://data.casearth.cn/thematic/hainan/233
Liu M, Graham N, Wang W, et al. 2022. Spatial assessment of tap-water safety in China. Nature Sustainability, 5(8): 689-698. [DOI:10.1038/s41893-022-00898-5http://dx.doi.org/10.1038/s41893-022-00898-5]
Lu S L, Jia L, Jiang Y Z, et al. 2021. Progress and Prospect on Monitoring and Evaluation of United Nations SDG 6 (Clean Water and Sanitation) Target. Bulletin of Chinese Academy of Sciences, 36(8):904-913.
卢善龙,贾立,蒋云钟等. 2021. 联合国可持续发展目标6(清洁饮水与卫生设施)监测评估:进展与展望. 中国科学院院刊, 36(8):904-913. [DOI:10.16418/j.issn.1000-3045.20210705007http://dx.doi.org/10.16418/j.issn.1000-3045.20210705007]
Mulligan M, van Soesbergen A, Hole D G, et al. 2020. Mapping nature's contribution to SDG 6 and implications for other SDGs at policy relevant scales. Remote Sensing of Environment, 239(2): 111671. [DOI:10.1016/j.rse.2020.111671http://dx.doi.org/10.1016/j.rse.2020.111671]
Mulligan M. 2009. The human water quality footprint: agricultural, industrial, and urban impacts on the quality of available water globally and in the Andean region//Proceedings of the International Conference on Integrated Water Resource Management and Climate Change. Cali, CO.: 11. http://www.ambiotek.com/publications/CINARA_Industry_and_mining.pdfhttp://www.ambiotek.com/publications/CINARA_Industry_and_mining.pdf
Mulligan M. 2022. The problem with water footprints outside of irrigated drylands. Water International, 47(7): 1085-1107. [DOI:10.1080/02508060.2022.2133815http://dx.doi.org/10.1080/02508060.2022.2133815]
Peng S.Z., Ding Y.X., Wen Z.M., Chen Y.M., Cao Y., & Ren J.Y. (2017). Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100. Agricultural and Forest Meteorology, 233, 183-194. [DOI:10.1016/j.agrformet.2016.11.129http://dx.doi.org/10.1016/j.agrformet.2016.11.129]
Rosenstock T S, Lamanna C, Chesterman S, et al. 2017. When less is more: innovations for tracking progress toward global targets. Current Opinion in Environmental Sustainability, 26-27: 54-61. [DOI:10.1016/j.cosust.2017.02.010http://dx.doi.org/10.1016/j.cosust.2017.02.010]
Sachs J, Kroll C, Lafortune G, et al. 2022. From Crisis to Sustainable Development: the SDGs as Roadmap to 2030 and Beyond. Sustainable Development Report 2022. Cambridge: Cambridge University Press.[DOI:10.1017/9781009210058http://dx.doi.org/10.1017/9781009210058]
Tang G A. 2019. Digital elevation model of China (1KM). A Big Earth Data Platform for Three Poles.(汤国安. 2019. 中国数字高程图(1KM). 时空三极环境大数据平台.) https://data.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734https://data.tpdc.ac.cn/zh-hans/data/12e91073-0181-44bf-8308-c50e5bd9a734
United Nations General Assembly. 2015. Transforming Our World; The 2030 Agenda for Sustainable Development. United Nations: New York, NY, USA. https://sdgs.un.org/2030agendahttps://sdgs.un.org/2030agenda
UN-Water. 2023. The United Nations World Water Development Report 2023: Partnerships and cooperation for water. Geneva: UN-Water. https://unesdoc.unesco.org/ark:/48223/pf0000384655https://unesdoc.unesco.org/ark:/48223/pf0000384655
WorldPop. 2018. School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076.[DOI:10.5258/SOTON/WP00674http://dx.doi.org/10.5258/SOTON/WP00674]
Xiang X M. 2007. An analysis of main characteristics and factors on the sustainable development of water resources in Hainan. Journal of Hainan Normal University (Natural Science), 20(1):80-83.
向晓明. 2007. 海南岛水资源基本特点及影响可持续发展的主要因素初探. 海南师范大学学报(自然科学版), 20(1):80-83.[DOI:1671-8747(2007)01-0080-04http://dx.doi.org/1671-8747(2007)01-0080-04]
Xiao R B, OuYang Z Y, Han Y S, et al. 2004. Ecological security assessment of Hainan Island. Journal of Natural Resources, 19(6): 769-775.
肖荣波, 欧阳志云, 韩艺师, 等. 2004. 海南岛生态安全评价 . 自然资源学报, 19(6): 769-775. [DOI:10.11849/zrzyxb.2004.06.012http://dx.doi.org/10.11849/zrzyxb.2004.06.012]
Xu L L, Liu H Q, Jin Y, et al. 2017. Characteristics of and Problems from Development and Utilization of Water Resources in Hainan Province. Chinese Journal of Tropical Agriculture, 37(9):120-127.
徐磊磊,刘海清,金琰等.2017.海南省水资源开发利用特点及主要水资源问题.热带农业科学, 37(9):120-127.[ DOI:10.12008/j.issn.1009-2196.2017.09.024]
Xu Z, Chau S N, Chen X, et al. 2020. Assessing progress towards sustainable development over space and time. Nature, 577(7788): 74-78. [DOI:10.1038/s41586-019-1846-3http://dx.doi.org/10.1038/s41586-019-1846-3]
Zhang X, Liu L Y, Chen X L, et al. 2020. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth System Science Data Discussions, 1-31. [DOI:10.5194/essd-13-2753-2021http://dx.doi.org/10.5194/essd-13-2753-2021]
Zhang C, Sun Z, Xing Q, et al. 2021. Localizing Indicators of SDG11 for an integrated assessment of urban sustainability—a case study of Hainan Province. Sustainability, 13(19): 11092. [DOI:10.3390/su131911092http://dx.doi.org/10.3390/su131911092]
Zheng C L, Jia L, Hu G C. 2023. Global daily 1-km actual evapotranspiration from 2000 to 2021 (ETMonitor-1km_2000-2021), Beijing: International Research Center of Big Data for Sustainable Development Goals (CBAS).
郑超磊, 贾立, 胡光成. 2022. ETMonitor全球1公里分辨率地表实际蒸散发数据集. 国家青藏高原科学数据中心. [DOI:10.1016/j.jhydrol.2022.128444http://dx.doi.org/10.1016/j.jhydrol.2022.128444]
Zhang J J. 2017. Comprehensive Evaluation of Resources and Environment Carrying Capacity in Hainan Island. China University of Geosciences, Wuhan.
张晶晶. 2017. 海南岛资源环境承载力评价. 中国地质大学, 武汉. 硕士学位论文.
相关作者
相关机构