EllipticNet: Equation-based Remote Sensing Oriented Object Detection Network
- Pages: 1-19(2024)
Published Online: 11 March 2024
DOI: 10.11834/jrs.20243280
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published Online: 11 March 2024 ,
扫 描 看 全 文
涂可龙,卿雅娴,李真强,杨超,祁昆仑,吴华意.XXXX.EllipticNet:基于椭圆方程的遥感有向目标检测.遥感学报,XX(XX): 1-19
TU Kelong,QING Yaxian,LI Zhenqiang,Yang Chao,QI Kunlun,WU Huayi. XXXX. EllipticNet: Equation-based Remote Sensing Oriented Object Detection Network. National Remote Sensing Bulletin, XX(XX):1-19
遥感有向目标检测是计算机视觉领域内一项具有挑战性的任务,传统的水平框表示法无法精确定位尺度各异、方向任意且密集排列的遥感目标。目前广泛采用的五参数有向框表示法,由于方向角的周期性和边的交换性问题,增加了模型训练的复杂度。为了解决上述问题,本文提出了一种基于椭圆方程的遥感有向目标检测模型(Elliptical Equation-based Remote Sensing Oriented Object Detection Network,EllipticNet)。首先,EllipticNet将方向角的预测问题解耦为两个子问题:定量角度回归和旋转方向分类,从而克服五参数有向框表示法的边界不连续性问题;结合椭圆的长短轴以及中心点预测,实现遥感有向目标的精确表示。其次,本文设计了一种椭圆约束的损失函数,通过增强椭圆参数之间的内在几何关系,提高EllipticNet训练的鲁棒性。此外,本文还提出了一种逐层空洞空间卷积池化金字塔模块,显著提升EllipticNet对多尺度特征的表征能力。最后,在DOTA、HRSC2016和UCAS_AOD三个常用的公开遥感数据集上的对比实验表明,本文方法在性能和效率方面均具有竞争力,表明本文方法在遥感有向目标检测中具有一定的实用价值。
Objective.Remote sensing oriented object detection is a challenging task in the field of computer vision
as traditional horizontal bounding box representations cannot accurately locate remote sensing targets that are of various scales
arbitrary orientations
and densely arranged. The widely used five-parameter oriented bounding box representation increases the complexity of model training due to the periodicity of the orientation angle and the interchangeability of edges. To address these issues
this paper proposes an elliptical equation-based remote sensing oriented object detection network (EllipticNet).
Methods
2
.EllipticNet decouples the problem of predicting the orientation angle into two sub-problems: quantitative angle regression and rotation direction classification. Moreover
the proposed method combines the major and minor axes of the ellipse and its center to describe the remote sensing oriented target more accurately
thereby overcoming the boundary discontinuity problem of the five-parameter oriented bounding box representation. Additionally
a novel ellipse-constrained loss function is designed to enhance the intrinsic geometric relationship between the ellipse parameters
improving the robustness of EllipticNet training. Furthermore
a layer-wise dilated spatial pyramid pooling module is proposed
significantly enhancing EllipticNet's ability to represent multi-scale features.
Results
2
.Finally
the proposed method is validated on three commonly used public remote sensing datasets: DOTA
HRSC2016
and UCAS_AOD.
Conclusion
2
.The results demonstrate that the proposed method is competitive in terms of performance and efficiency
indicating its practical value in remote sensing oriented object detection.
有向目标检测椭圆方程特征增强高分辨率遥感影像
oriented object detectionelliptic equationfeature enhancementhigh resolution remote sensing image
Azimi, Seyed Majid, Eleonora Vig, Reza Bahmanyar, Marco Körner, and Peter Reinartz. 2019. Towards multi-class object detection in unconstrained remote sensing imagery. Paper presented at the Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers, PartIII.
CHEN, Kaiqiang, Xin GAO, Menglong YAN, Yue ZHANG, and Xian SUN. 2020. "Building extraction in pixel level from aerial imagery with a deep encoder-decoder network." Journal of Remote Sensing(Chinese) 24 (9):1134-42.
陈凯强, 高鑫, 闫梦龙, 张跃, 孙显. 2020. 基于编解码网络的航空影像像素级建筑物提取. 遥感学报, 24 (9):1134-42 [DOI: 10.11834/jrs.20209056http://dx.doi.org/10.11834/jrs.20209056]
Chen, Liang-Chieh, George Papandreou, Florian Schroff, and Hartwig Adam. 2017. "Rethinking atrous convolution for semantic image segmentation." arXiv preprint arXiv:1706.05587.
Chen, Zhiming, Kean Chen, Weiyao Lin, John See, Hui Yu, Yan Ke, and Cong Yang. 2020. Piou loss: Towards accurate oriented object detection in complex environments. Paper presented at the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, PartV 16.
Cheng, Gong, Peicheng Zhou, and Junwei Han. 2016. "Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images." IEEE Transactions on Geoscience and Remote Sensing 54 (12):7405-15.
Ding, Jian, Nan Xue, Yang Long, Gui-Song Xia, and Qikai Lu. 2019. Learning roi transformer for oriented object detection in aerial images. Paper presented at the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Durieux, Laurent, Erwann Lagabrielle, and Andrew Nelson. 2008. "A method for monitoring building construction in urban sprawl areas using object-based analysis of Spot 5 images and existing GIS data." ISPRS Journal of Photogrammetry and Remote Sensing 63 (4):399-408.
Everingham, Mark, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. 2015. "The pascal visual object classes challenge: A retrospective." International journal of computer vision 111:98-136.
Everingham, Mark, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. 2009. "The pascal visual object classes (voc) challenge." International journal of computer vision 88:303-8.
Kingma, Diederik P, and Jimmy Ba. 2014. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980.
Liao, Minghui, Baoguang Shi, and Xiang Bai. 2018. "Textboxes++: A single-shot oriented scene text detector." IEEE transactions on image processing 27 (8):3676-90.
Lin, Tsung-Yi, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. 2017. Feature pyramid networks for object detection. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition.
Lin, Tsung-Yi, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017. Focal loss for dense object detection. Paper presented at the Proceedings of the IEEE international conference on computer vision.
Liu, Tianying, Yang Wang, Siyun Hou, Wengen Li, Jihong Guan, Shuigeng Zhou, and Rufu Qin. 2021. RBA-CenterNet: Feature Enhancement by Rotated Border Alignment for Oriented Object Detection. Paper presented at the 2021 International Joint Conference on Neural Networks (IJCNN).
Zhang S, Li S S, Wei G F, Zhang X N and Gao J W. 2022. Refined multi-scale feature-oriented object detection of remote sensing images. National Remote Sensing Bulletin, 26 (12):2616-2628.
张省,李山山,魏国芳,张新耐,高建威.2022.面向精细化多尺度特征的遥感图像目标检测.遥感学报, 26 (12):2616-2628 [DOI:10.11834/jrs.20221http://dx.doi.org/10.11834/jrs.20221
801Liu, Xipeng, Jianxin Chen, Bin Kang, and Xuguang Zhang. 2019. Arbitrary-Oriented Ship Detection Based on Rotation Region Locating Networks in Large Scale Remote Sensing Images. Paper presented at the 2019 IEEE 4th International Conference on Image, Vision and Computing (ICIVC). (Wen L, Cheng Y, Fang Y,et al. 2023. A comprehensive survey of oriented object detection in remote sensing images[J]. Expert Systems with Applications.) (Xia G S, Bai X, Ding J,et al. 2018. DOTA: A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE conference on computer vision and pattern recognition.) (Wang J, Ding J, Guo H,et al. 2019. Mask OBB: A semantic attention-based mask oriented bounding box representation for multi-category object detection in aerial images[J]. Remote Sensing 11(24): 2930.(Liu), Zikun, WangHongzhen, WengLubin, and YangYiping. 2016. "Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds." IEEE geoscience and remote sensing letters 13 (8):1074-8.)
Qin D D,Wan L,He P E,Zhang Y,Guo Y and Chen J. 2022. Multiscale object detection in remote sensing image by combining data fusion and feature selection. National Remote Sensing Bulletin,26(8):1662-1673
秦登达,万里,何佩恩,张轶,郭亚,陈杰.2022.结合数据融合与特征选择的遥感影像尺度多样目标检测.遥感学报,26(8):1662-1673 [DOI:10.11834/jrs.20221249http://dx.doi.org/10.11834/jrs.20221249]
Liu, Zikun, Liu Yuan, Lubin Weng, and Yiping Yang. 2017. A high resolution optical satellite image dataset for ship recognition and some new baselines. Paper presented at the ICPRAM.
Loshchilov, Ilya, and Frank Hutter. 2016. "Sgdr: Stochastic gradient descent with warm restarts." arXiv preprint arXiv:1608.03983.
Ma, Jianqi, Weiyuan Shao, Hao Ye, Li Wang, Hong Wang, Yingbin Zheng, and Xiangyang Xue. 2018. "Arbitrary-oriented scene text detection via rotation proposals." IEEE transactions on multimedia 20 (11):3111-22.
Qian, Wen, Xue Yang, Silong Peng, Junchi Yan, and Yue Guo. 2021. Learning modulated loss for rotated object detection. Paper presented at the Proceedings of the AAAI conference on artificial intelligence.
WANG, Haifeng, Chengjiang ZHOU, Xuefeng CHEN, and Yang YANG. 2022. "Detection of earthquake-damaged buildings via UAV high-resolution remote sensing images. National Remote Sensing Bulletin." National Remote Sensing Bulletin XX (XX):1-16
王海峰, 周成江, 陈雪峰, 杨扬. 2022. 利用无人机高分遥感图像检测震灾中损坏建筑物. 遥感学报, XX(XX): 1-16 [DOI: 10.11834/jrs.20221569http://dx.doi.org/10.11834/jrs.20221569]
WANG, Jiabao, Gong CHENG, Xingxing XIE, Yanqing YAO, and Junwei HAN. 2021. "Oriented Object Detection with Multi-information Supervision in Optical Remote Sensing Images." National Remote Sensing Bulletin XX (XX):1-10
王家宝, 程塨, 谢星星, 姚艳清, 韩军伟. 2021. 多元信息监督的遥感图像有向目标检测. 遥感学报, XX(XX): 1-10 [DOI: 10.11834/jrs.20211564http://dx.doi.org/10.11834/jrs.20211564]
Wang, Jinwang, Wen Yang, Heng-Chao Li, Haijian Zhang, and Gui-Song Xia. 2020. "Learning center probability map for detecting objects in aerial images." IEEE Transactions on Geoscience and Remote Sensing 59 (5):4307-23.
Woo, Sanghyun, Jongchan Park, Joon-Young Lee, and In So Kweon. 2018. Cbam: Convolutional block attention module. Paper presented at the Proceedings of the European conference on computer vision (ECCV).
Fan X N,Yan W,Shi P F and Zhang X W. 2022. Remote sensing image target detection based on a multi-scale deep feature fusion network. National Remote Sensing Bulletin,26(11):2292-2303.
范新南,严炜,史朋飞,张学武.2022.多尺度深度特征融合网络的遥感图像目标检测.遥感学报,26(11):2292-2303[DOI: 10.11834/jrs.20210http://dx.doi.org/10.11834/jrs.20210
170Xia, Gui-Song, Xiang Bai, Jian Ding, Zhen Zhu, Serge Belongie, Jiebo Luo, Mihai Datcu, Marcello Pelillo, and Liangpei Zhang. 2018. DOTA: A large-scale dataset for object detection in aerial images. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. (Xu, Yongchao, FuMingtao, WangQimeng, WangYukang, ChenKai, XiaGui-Song, and XiangBai. 2020. "Gliding vertex on the horizontal bounding box for multi-oriented object detection." IEEE transactions on pattern analysis and machine intelligence 43 (4):1452-9.) (Yang, Xue, and Junchi Yan. 2020. Arbitrary-oriented object detection with circular smooth label. Paper presented at the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, PartVIII 16.(Yang), Xue, YanJunchi, FengZiming, and TaoHe. 2021. R3det: Refined single-stage detector with feature refinement for rotating object. Paper presented at the Proceedings of the AAAI conference on artificial intelligence.(Yi), Jingru, WuPengxiang, BoLiu, HuangQiaoying, HuiQu, and MetaxasDimitris. 2021. Oriented object detection in aerial images with box boundary-aware vectors. Paper presented at the Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.)
Zhang, L, Y S Zhang, Y Yu, Y Z Ma, and H G Jiang. 2022. "Survey on object detection in tilting box for remote sensing images." National Remote Sensing Bulletin 26 (9):1723-43
张磊, 张永生, 于英, 姜怀刚. 2022. 遥感图像倾斜边界框目标检测研究进展与展望. 遥感学报, 26(9): 1723-1743 [DOI: 10.11834/jrs.20210247http://dx.doi.org/10.11834/jrs.20210247]
Tian Z Z, Zhang H W,Wang K,Liu S Q,Zou Q J,Zhao Z,Chen Y B. 2023. Application of an improved Centernet in remote sensing images object detection. National Remote Sensing Bulletin, XX (XX):1-11.
田壮壮, 张恒伟, 王坤, 刘盛启, 邹前进, 赵镇,陈育斌.XXXX.改进CenterNet在遥感图像目标检测中的应用.遥感学报,XX(XX):1-11 [DOI: 10.11834/jrs.20231638http://dx.doi.org/10.11834/jrs.20231638]
Wang X L,Liang Z Y and Liu T. 2023. Feature attention pyramid-based remote sensing image object detection method. National Remote Sensing Bulletin, 27(2): DOI: 10.11834/jrs.20235011.
汪西莉,梁正印,刘涛.2023.基于特征注意力金字塔的遥感图像目标检测方法.遥感学报.27(2): 492-501[DOI: 10.11834/jrs.20235011http://dx.doi.org/10.11834/jrs.20235011]
Zhang, Rui, Heng Li, Kaifeng Duan, Shucheng You, Ke Liu, Futao Wang, and Yong Hu. 2020. "Automatic detection of earthquake-damaged buildings by integrating UAV oblique photography and infrared thermal imaging." Remote Sensing 12 (16):2621.
Zheng, Xianwei, Wanling Zhang, Linxi Huan, Jianya Gong, and Hongyan Zhang. 2021. "AProNet: Detecting objects with precise orientation from aerial images." ISPRS Journal of Photogrammetry and Remote Sensing 181:99-112.
Zhong, Ping, and Runsheng Wang. 2007. "A multiple conditional random fields ensemble model for urban area detection in remote sensing optical images." IEEE Transactions on Geoscience and Remote Sensing 45 (12):3978-88.
Zhou, Lin, Haoran Wei, Hao Li, Wenzhe Zhao, Yi Zhang, and Yue Zhang. 2020. "Arbitrary-oriented object detection in remote sensing images based on polar coordinates." IEEE Access 8:223373-84.
Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. 2019. "Objects as points." arXiv preprint arXiv:1904.07850.
Wang M, Li Q, Gu Y, et al. 2023. Highly Efficient Anchor-Free Oriented Small Object Detection for Remote Sensing Images via Periodic Pseudo-Domain[J]. Remote Sensing, 15(15): 3854.
Qian X, Zhang N, Wang W. 2023. Smooth giou loss for oriented object detection in remote sensing images[J]. Remote Sensing, 15(5): 1259.
Ming Q, Miao L, Zhou Z, et al. 2021. "Optimization for arbitrary-oriented object detection via representation invariance loss". IEEE Geoscience and Remote Sensing Letters.
Liu Y, He T, Chen H, et al. 2019. Exploring the capacity of sequential-free box discretization network for omnidirectional scene text detection[J]. arXiv preprint arXiv:1912.09629.
Lin T Y, Goyal P, Girshick R, et al. 2017. Focal loss for dense object detection[C]//Proceedings of the IEEE international conference on computer vision.
Hou L, Lu K, Xue J, et al. 2022. Shape-adaptive selection and measurement for oriented object detection. Paper presented at the Proceedings of the AAAI conference on artificial intelligence..
Z. Guo, X. Zhang, C. Liu, X. Ji, J. Jiao, and Q. Ye. 2022. "Convex-hull feature adaptation for oriented and densely packed object detection". IEEE Transactions on Circuits and Systems for Video Technology.
Dai L, Liu H, Tang H, et al. 2022. Ao2-detr: Arbitrary-oriented object detection transformer[J]. IEEE Transactions on Circuits and Systems for Video Technology.
Wei H, Zhang Y, Chang Z, et al. 2020. Oriented objects as pairs of middle lines[J]. ISPRS Journal of Photogrammetry and Remote Sensing 169: 268-279.
相关文章
相关作者
相关机构