Progress and Prospects in River Cross Section Extraction Based on Multi-Source Remote Sensing
- Pages: 1-21(2024)
Published Online: 08 March 2024
DOI: 10.11834/jrs.20243315
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published Online: 08 March 2024 ,
扫 描 看 全 文
薛源,覃超,徐梦珍,傅旭东,李丹,吴保生,王光谦.XXXX.基于多源遥感数据的河流断面提取进展与展望.遥感学报,XX(XX): 1-21
XUE Yuan,QIN Chao,XU Mengzhen,FU Xudong,LI Dan,WU Baosheng,WANG Guangqian. XXXX. Progress and Prospects in River Cross Section Extraction Based on Multi-Source Remote Sensing. National Remote Sensing Bulletin, XX(XX):1-21
河流断面形态是开展河流水文过程、物质通量等研究的基础。断面形态的获取多基于现场量测,制约了难以抵达地区的断面获取及全流域、大范围河段的断面提取。随着多源遥感观测及水面、水下无人观测等智能技术的发展,融合有限的地面观测数据,建立与河流特征相适应的多源遥感自动化提取方法,成为获取河流断面形态的重要途径和新方向。本文系统梳理了近20年来河流断面形态提取的相关研究进展,提出并展望了适用于缺资料地区或大范围流域断面形态提取的“空-天-地”一体化观测方案,结合技术进步,探讨了方案的可行性及未来发展趋势。
Natural rivers carry water and materials within a certain boundary geometry. Research on rivers often involves extracting geometric information of river surfaces and boundaries or hydraulic characteristics such as flow velocity and discharge. Among these hydraulic attributes
geometric data pertaining to river cross sections and other river features
which are easier to observe than the dynamic flow characteristics
are indispensable for conducting research on hydrological processes and material fluxes within river system. Traditionally
the extraction of such data has heavily relied on field measurements
posing challenges in obtaining data for inaccessible areas such as mountainous regions
canyons
disaster-prone regions or expansive river basins. With the continuous advancement of multi-source remote sensing technology
encompassing underwater remote sensing
near-earth remote sensing
and satellite remote sensing
it has become possible to address the data scarcity in mountainous regions
canyons
and other areas by integrating multi-source remote sensing observations with limited ground measurements and establishing automatic extraction methods. Building upon the advancements made in the extraction of river cross section morphology over the past two decades
this paper examines the strengths and limitations of current methods. This study presented an integrated “air-space-ground” remote sensing data observation scheme
amalgamated with the corresponding automatic extraction methodologies
such as river surfaces extraction method
river width extraction method and river water level extraction method
to extract river information
particularly cross section morphology
in data-scarce or large-scale river basins. Furthermore
this study offered valuable insights into the future development trends by considering the existing technical progress in the field.
河流断面形态多源遥感“空-天-地”一体化观测自动提取
Cross section morphologyMulti-source remote sensingIntegrated "air-space-ground" observationAutomated extraction
Abdallah H, Bailly J, Baghdadi N N, Saint-Geours N and Fabre F. 2013. Potential of space-borne lidar sensors for global bathymetry in coastal and inland waters. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1): 202-216
Abrams M and Crippen R. 2019. Aster gdem user guide v3
Allen G H and Pavelsky T M. 2015. Patterns of river width and surface area revealed by the satellite-derived north american river width data set. Geophysical Research Letters, 42(2): 395-402
Allen G H and Pavelsky T M. 2018. Global extent of rivers and streams. Science, 361(6402): 585-588
Alpers W and Hennings I. 1984. A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar. Journal of Geophysical Research: Oceans, 89(C6): 10529-10546
Altenau E H, Pavelsky T M, Durand M T, Yang X, de Moraes Frasson R P and Bendezu L. 2021b. The surface water and ocean topography (swot) mission river database (sword): a global river network for satellite data products. Water Resources Research, 57(7): 15
Bjerklie D M,Dingman S LandBolster C H. 2005. Comparison of constitutive flow resistance equations based on the manning and chezy equations applied to natural rivers. Water Resources Research, 41(11)
Brêda J P L F,Paiva R C D,Bravo J M,Passaia O A and Moreira D M. 2019. Assimilation of satellite altimetry data for effective river bathymetry. Water Resources Research, 55(9): 7441-7463
Brown C F, Brumby S P, Guzder-Williams B, Birch T, Hyde S B, Mazzariello J, Czerwinski W, Pasquarella V J, Haertel R, Ilyushchenko S, Schwehr K, Weisse M, Stolle F ,Hanson C, Guinan O, Moore R and Tait A M. 2022. Dynamic world, near real-time global 10 m land use land cover mapping. Scientific Data, 9(1)
Calmant S, Seyler F and Cretaux J F. 2008. Monitoring continental surface waters by satellite altimetry. Surveys in Geophysics, 29(4-5): 247-269
Cao B, Zhu S L, Qiu Z G and Cao B C. 2018. Experiments in shallow seafloor surveying using WorldView-2 images and two-media stereophotogrammetry. National Remote Sensing Bulletin, 22(05): 745-757
曹斌, 朱述龙, 邱振戈,曹彬才. 2018. Worldview-2影像双介质摄影测量的浅海地形测绘试验. 遥感学报, 22(05): 745-757
Chanson H. 2004. The hydraulics of open channel flow: an introduction. Elsevier Butterworth-Heinemann, Oxford, U.K.
Chen R and Zheng Y W. 2018. Coefficient calibration analysis on flow measured by dual-track radar wave automatic flow measurement system. Yangtze River, 49(S2): 62-65+102
陈荣, 郑永伟. 2018. 双轨式雷达波自动测流系统流量系数率定分析. 人民长江, 49(S2): 62-65+102
Chen X, Hassan M A and Fu X. 2022. Convolutional neural networks for image-based sediment detection applied to a large terrestrial and airborne dataset. Earth Surface Dynamics, 10(2): 349-366
Collin A, Long B and Archambault P. 2010. Salt-marsh characterization, zonation assessment and mapping through a dual-wavelength lidar. Remote Sensing of Environment, 114(3): 520-530
Chadwick A J, Greenberg E and Ganti V. 2023. Remote sensing of riverbank migration using particle image velocimetry. Journal of Geophysical Research: Earth Surface, 128(7)
Cobby D M, Mason D C, Horritt M S and Bates P D. 2003. Two-dimensional hydraulic flood modelling using a finite-element mesh decomposed according to vegetation and topographic features derived from airborne scanning laser altimetry. Hydrological Processes, 17(10): 1979-2000
Coppo Frias M, Liu S, Mo X, Nielsen K, Ranndal H, Jiang L, Ma J and Bauer-Gottwein P. 2023. River hydraulic modeling with icesat-2 land and water surface elevation. Hydrology and Earth System Sciences, 27(5): 1011-1032
Detert M,Johnson E D and Weitbrecht V. 2017. Proof‐of‐concept for low‐cost and non‐contact synoptic airborne river flow measurements. International Journal of Remote Sensing, 38(8-10): 2780-2807
Dingman S L. 2007. Analytical derivation of at-a-station hydraulic–geometry relations. Journal of Hydrology, 334(1-2): 17-27
Du X M, Zhao K Y and Feng M Q. 2013. Simulation of flood routing with compound cross-section in middle reach of the Qin River. Journal of Northwest A & F University(Natural Science Edition), 41(02): 222-228+234
杜献梅, 赵克玉,冯民权. 2013. 沁河中游复式断面洪水演进模拟. 西北农林科技大学学报(自然科学版), 41(02): 222-228+234
Easa S M. 2016. Versatile general elliptic open channel cross section. KSCE Journal of Civil Engineering, 20(4): 1572-1581
Fang Y, Cao B C, Gao L, Hu H Y and Jiang Z Z. 2020. Development and application of lidar mapping satellite. Infrared and Laser Engineering, 49(11): 19-27
方勇,曹彬才,高力,胡海彦,江振治. 2020. 激光雷达测绘卫星发展及应用. 红外与激光工程, 49(11): 19-27
Fassoni-Andrade A C, Paiva R C D D, Rudorff C D M, Barbosa C C F and Novo E M L D. 2020. High-resolution mapping of floodplain topography from space: a case study in the amazon. Remote Sensing of Environment, 251:112065
Ferguson R. 2010. Time to abandon the manning equation? Earth Surface Processes and Landforms, 35(15): 1873-1876
Feng D, Gleason C J, Yang X, Allen G H and Pavelsky T M. 2022. How have global river widths changed over time? Water Resources Research, 58(8): e2021WR031712
Frappart F, Calmant S, Cauhopé M, Seyler F and Cazenave A. 2006. Preliminary results of envisat ra-2-derived water levels validation over the amazon basin. Remote Sensing of Environment, 100(2): 252-264
Gleason C J and Smith L C. 2014. Toward global mapping of river discharge using satellite images and at-many-stations hydraulic geometry. Proceedings of the National Academy of Sciences, 111(13): 4788-4791
Gonçalves J A and Henriques R. 2015. Uav photogrammetry for topographic monitoring of coastal areas. ISPRS Journal of Photogrammetry and Remote Sensing, 104:101-111
Gonzalez M O, Preetha P, Kumar M and Clement T P. 2023. Comparison of data-driven groundwater recharge estimates with a process-based model for a river basin in the southeastern usa. Journal of Hydrologic Engineering, 28(7)
Gorma W, Post M A, White J, Gardner J, Luo Y, Kim J, Mitchell P D, Morozs N, Wright M and Xiao Q. 2021. Development of modular bio-inspired autonomous underwater vehicle for close subsea asset inspection. Applied Sciences, 11(12): 5401
Han Q W and He M M. 1987. Mathematical modeling of reserrvoir sedimentation and fluvial process. Journal of Sediment Research, 03: 14-29
韩其为,何明民. 1987. 水库淤积与河床演变的(一维)数学模型. 泥沙研究,03: 14-29
Hou J,Van Dijk A I J M and Renzullo L J. 2022. Merging landsat and airborne lidar observations for continuous monitoring of floodplain water extent, depth and volume. Journal of Hydrology, 609127684
Howat I M, Porter C, Smith B E, Noh M and Morin P. 2019. The reference elevation model of antarctica. The Cryosphere, 13(2): 665-674
Hu C H, Zheng C M, Wang G Q, Zhang J Y, Wang C, Yao T D, Wang Y X, Lai M Y, Ni G H, Wang Y C, Zhang C and Tian F Q.2022. Reviews of the major research plan "runoff change and its adaptive management in the source region of major rivers in Southwestern China". Advances in Water Science, 33(03): 337-359
胡春宏,郑春苗,王光谦,张建云,王超,姚檀栋,王焰新,赖明勇,倪广恒,王雨春,张弛,田富强. 2022. “西南河流源区径流变化和适应性利用”重大研究计划进展综述. 水科学进展, 33(03): 337-359
Huai W X,Li S,Katul G G,Liu M Y and Yang Z H. 2021. Flow dynamics and sediment transport in vegetated rivers: a review. Journal of Hydrodynamics, 33(3)
Huang L,Fan C,Meng J and Zhang J. 2022. Retrieval of underwater topography based on multi-source sar images. Kuala Lumpur, Malaysia: 6939-6942
Huang Q, Long D, Du M, Zeng C, Li X, Hou A and Hong Y. 2018b. An improved approach to monitoring brahmaputra river water levels using retracked altimetry data. Remote Sensing of Environment, 211:112-128
Huang Q, Long D, Du M, Han Z and Han P. 2020. Daily continuous river discharge estimation for ungauged basins using a hydrologic model calibrated by satellite altimetry: implications for the swot mission. Water Resources Research, 56(7)
Huang Q, Long D, Du M, Zeng C, Qiao G, Li X, Hou A and Hong Y. 2018a. Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: a case study of the upper brahmaputra river. Remote Sensing of Environment, 219:115-134
Ibrahim P O, Sternberg H, Samaila-Ija H A, Adgidzi D and Nwadialor I J. 2023. Modelling topo-bathymetric surface using a triangulation irregular network (tin) of tunga dam in nigeria. Applied Geomatics, 15(1): 281-293
Isikdogan F,Bovik A and Passalacqua P. 2017. Rivamap: an automated river analysis and mapping engine. Remote Sensing of Environment, 202:88-97
Jarvis A,Reuter H I,Nelson A and Guevara E. 2008. Hole-filled srtm for the globe version 4.cgiar-csi srtm 90 m database[J/OL]. http://srtm.csi.cgiar.org/http://srtm.csi.cgiar.org/
Johnson E D and Cowen E A. 2016. Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics. Water Resources Research, 52(3): 2178-2193
Jones J. 2019. Improved automated detection of subpixel-scale inundation—revised dynamic surface water extent (dswe) partial surface water tests. Remote Sensing, 11(4): 374
Ji L, Gong P, Wang J, Shi J and Zhu Z. 2018. Construction of the 500‐m resolution daily global surface water change database (2001–2016). Water Resources Research, 54(12): 10270-10292
Kabiri K. 2023. Retrieval and validation of the secchi disk depth values (zsd) from the sentinel-3/olci satellite data in the persian gulf and the gulf of oman. Environmental Science and Pollution Research, 30(29): 73649-73661
Kang S, Yu J C and Zhang Jin. 2023. Research Status of Micro Autonomous Underwater Vehicle. Robot, 45(02): 218-237
康帅, 俞建成,张进. 2023. 微小型自主水下机器人研究现状. 机器人, 45(02): 218-237
Kim Y, Muste M, Hauet A, Krajewski W F, Kruger A and Bradley A. 2008. Stream discharge using mobile large-scale particle image velocimetry: a proof of concept. Water Resources Research, 44(9)
Kucharczyk M and Hugenholtz C H. 2021. Remote sensing of natural hazard-related disasters with small drones: global trends, biases, and research opportunities. Remote Sensing of Environment, 264:112577
Kulkarni S and Rege P. 2020. Pixel level fusion techniques for SAR and optical images: A review[J]. Information Fusion, 59: 13-29
Lakshmi S E and Yarrakula K. 2019. Review and critical analysis on digital elevation models. Geofizika, 35(2): 129-157
Lee J, Ghorbanidehno H, Farthing M W, Hesser T J, Darve E F and Kitanidis P K. 2018. Riverine bathymetry imaging with indirect observations. Water Resources Research, 54(5): 3704-3727
Legleiter C and Fosness R. 2019. Defining the limits of spectrally based bathymetric mapping on a large river. Remote Sensing, 11(6): 665
Legleiter C J and Harrison L R. 2019. Remote sensing of river bathymetry: evaluating a range of sensors, platforms, and algorithms on the upper sacramento river, california, usa. Water Resources Research, 55(3): 2142-2169
Legleiter C J,Tedesco M,Smith L C,Behar A E and Overstreet B T. 2014. Mapping the bathymetry of supraglacial lakes and streams on the greenland ice sheet using field measurements and high-resolution satellite images. The Cryosphere, 8(1): 215-228
Lei X, Ke L H, Yong B, Zhang J S and Cao Q Y. 2022. Evaluation of River Water Level Monitoring from Satellite Radar Altimetry Datasets over Chinese Rivers. Remote Sensing Technology and Application, 37(01): 61-72
雷逍, 柯灵红, 雍斌, 张金山,曹倩怡. 2022. 卫星雷达测高水位数据产品在中国区河流的监测精度评价. 遥感技术与应用, 37(01): 61-72
Leopold L B and Maddock T. 1953. The hydraulic geometry of stream channels and some physiographic implications
Li D, Wu B S, Chen B W, Xue Y and Zhang Y. 2020. Review of water body information extraction based on satellite remote sensing. Journal of Tsinghua University(Science and Technology) , 60(02): 147-161
李丹, 吴保生, 陈博伟, 薛源,张翼. 2020. 基于卫星遥感的水体信息提取研究进展与展望. 清华大学学报(自然科学版), 60(02): 147-161
Li D, Xue Y, Qin C, Wu B, Chen B and Wang G. 2022. A bankfull geometry dataset for major exorheic rivers on the qinghai-tibet plateau. Scientific Data, 9(1)
Li Q, Degnan J,Barrett T and Shan J. 2016. First evaluation on single photon-sensitive lidar data. Photogrammetric Engineering & Remote Sensing, 82(7): 455-463
Li S,Li C and Kang X . 2021. Development status and future prospects of multi-source remote sensing image fusion. National Remote Sensing Bulletin, 25(1):148-166
李树涛,李聪妤,康旭东.2021.多源遥感图像融合发展现状与未来展望.遥感学报,25(1):148-166
Li X,Long D,Huang Q,Han P,Zhao F and Wada Y. 2019. High-temporal-resolution water level and storage change data sets for lakes on the tibetan plateau during 2000–2017 using multiple altimetric missions and landsat-derived lake shoreline positions. Earth System Science Data, 11(4): 1603-1627
Li Z H, Li P, Ding D and Wang H J. 2018. Research Progress of Global High Resolution Digital Elevation Models. Geomatics and Information Science of Wuhan University, 43(12): 1927-1942
李振洪, 李鹏, 丁咚, 王厚杰. 2018. 全球高分辨率数字高程模型研究进展与展望. 武汉大学学报(信息科学版), 43(12): 1927-1942
Liang D, Li Y H, Wang Z and Gong B S.2022. Rapid Terrain Measurement Using UAV-Based LiDAR and Unmanned Boat Bathymetric System: A Case Study of Wujia Bridge Survey in Sinan County, China. 2022 China Water Resources Academic Conference. Beijing, China:9
梁栋, 李亚虎, 王志, 龚秉生. 2022. 基于无人机机载lidar和无人船测深系统的快速地形测量应用——以思南县文家店乌江大桥勘测为例. 2022中国水利学术大会. 中国北京: 9
Lu J Y, Xu H T and Yao S M.2005. Turbulent characteristics of flow in river. Journal of Hydraulic Engineering,09: 1029-1034
卢金友,徐海涛,姚仕明. 2005. 天然河道水流紊动特性分析. 水利学报,09: 1029-1034
Luo S, Song C, Ke L, Zhan P, Fan C, Liu K, Chen T, Wang J and Zhu J. 2022. Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophysical Research Letters, 49(3)
Ma H,Nittrouer J A, Fu X, Parker G, Zhang Y, Wang Y, Wang Y, Lamb M P, Cisneros J, Best J, Parsons D R and Wu B. 2022. Amplification of downstream flood stage due to damming of fine-grained rivers. Nature Communications, 13(1)
MacDonell C J,Williams R D,Maniatis G,Roberts K and Naylor M. 2023. Consumer‐grade uav solid‐state lidar accurately quantifies topography in a vegetated fluvial environment. Earth Surface Processes and Landforms: 19
Monfort C L and Lippmann T C. 2011. Assimilation of airborne imagery with a wave model for bathymetric estimation. Journal of Coastal Research, 62(40-49
Morris C S and Gill S K. 1994. Evaluation of the topex/poseidon altimeter system over the great lakes. Journal of Geophysical Research, 99(C12): 24527
Musa Z N,Popescu I and Mynett A. 2015. A review of applications of satellite sar, optical, altimetry and dem data for surface water modelling, mapping and parameter estimation. Hydrology and Earth System Sciences, 19(9): 3755-3769
Ni J R. 2016. Research on the total material flux in rivers. The 18th Academician Assembly of the Chinese Academy of Sciences and the 5th Academic Annual Meeting of the Branches,Beijing, 583-589
倪晋仁. 2016. 河流全物质通量研究. 中国科学院第十八次院士大会暨第五届学部学术年会,北京, 583-589
Nyberg B, Henstra G, Gawthorpe R L, Ravnås R and Ahokas J. 2023. Global scale analysis on the extent of river channel belts. Nature Communications, 14(1)
Pacheco A, Horta J, Loureiro C and Ferreira Ó. 2015. Retrieval of nearshore bathymetry from landsat 8 images: a tool for coastal monitoring in shallow waters. Remote Sensing of Environment, 159(102-116
Pavelsky T M and Smith L C. 2008. Rivwidth: a software tool for the calculation of river widths from remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters, 5(1): 70-73
Pekel J, Cottam A, Gorelick N and Belward A S. 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633): 418-422
Petikas I,Keramaris E and Kanakoudis V. 2020. A novel method for the automatic extraction of quality non-planar river cross-sections from digital elevation models. Water, 12(12): 3553
Powers C,Hanlon R and Schmale D. 2018. Tracking of a fluorescent dye in a freshwater lake with an unmanned surface vehicle and an unmanned aircraft system. Remote Sensing, 10(2): 81
Qian N, Zhang R and Zhou Z D. 1987. Riverbed morphology evolution. China Science Publishing & Media Ltd, Beijing.
钱宁, 张仁, 周志德. 1987. 河床演变学.科学出版社,北京
Qin C,Wu B,Wang G and Wang G. 2021. Spatial distributions of at‐many‐stations hydraulic geometry for mountain rivers originated from the qinghai‐tibet plateau. Water Resources Research, 57(6)
Qin H M, Wang C, Xi X H and Nie S. 2016. Development of Airborne Laser Bathymetric Technology and Applications. Remote Sensing Technology and Application, 31(04): 617-624
秦海明, 王成, 习晓环, 聂胜. 2016. 机载激光雷达测深技术与应用研究进展. 遥感技术与应用, 31(04): 617-624
Qin S and Dai Z. 2023. Interpolation technique for the underwater dem generated by an unmanned surface vessel. Computer Modeling in Engineering & Sciences, 136(3): 3157-3172
Rowland J E, Dietrich A C and DeWalt S J. 2012. River cross-sectional measurement: a review. Journal of Hydrology, 4(423-442
Sarhadi A, Soltani S and Modarres R. 2012. Probabilistic flood inundation mapping of ungauged rivers: linking gis techniques and frequency analysis. Journal of Hydrology, 458-459(68-86
Scherer D, Schwatke C, Dettmering D and Seitz F. 2023. Icesat-2 river surface slope (iris): a global reach-scale water surface slope dataset. Scientific Data, 10(1)
Scherer D, Schwatke C, Dettmering D and Seitz F. 2022. Icesat‐2 based river surface slope and its impact on water level time series from satellite altimetry. Water resources research, 58(11)
Shi Z L and Huang C.2020. Recent advances in remote sensing of river characteristics. Progress in Geography, 39(04): 670-684
史卓琳,黄昌. 2020. 河流水情要素遥感研究进展. 地理科学进展, 39(04): 670-684
Takaku J,Tadono T,Tsutsui K and Ichikawa M. 2016. Validation of 'aw3d' global dsm generated from alos prism. 25-31
Tarboton D G. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2): 11
Teodoro A, Gonalves H and Pais-Barbosa J. 2010. Bathymetric estimation through principal components analysis using ikonos-2 data. 782419-782419
Tian X and Shan J. 2021. Comprehensive evaluation of the icesat-2 atl08 terrain product. IEEE Transactions on Geoscience and Remote Sensing, 59(10): 8195-8209
Tortini R, Noujdina N, Yeo S, Ricko M, Birkett C M, Khandelwal A, Kumar V, Marlier M E and Lettenmaier D P. 2020. Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018. Earth System Science Data, 12(2): 1141-1151
Urban T J, Schutz B E and Neuenschwander A L. 2008. A survey of icesat coastal altimetry applications: continental coast, open ocean island, and inland river. Terrestrial, Atmospheric and Oceanic Sciences, 19(1-2): 1
Verma R K, Ashwini K and Singh A. 2021. Channel morphology and prediction of mid-line channel migration in the reach of ganga river using gis and arima modeling during 1975–2020. H2Open Journal, 4(1): 321-335
Verpoorter C, Kutser T, Seekell D A and Tranvik L J. 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18): 6396-6402
Wang G , Liu J and Li T. 2005. Digital Watershed Model of Yellow River. Journal of Basic Science and Engineering,01: 1-8
王光谦, 刘家宏,李铁键. 2005. 黄河数字流域模型原理. 应用基础与工程科学学报,01: 1-8
Wang J, Li K, Yan X, Zheng L and Han X. 2023. Development and prospects of machine learning methods in geographic elements classification. National Remote Sensing Bulletin, 27(08): 1757-1768
王卷乐,李凯,严欣荣,郑莉and韩雪华. 2023. 地理要素分类机器学习方法发展与前景. 遥感学报, 27(08): 1757-1768
Wang Y, Wu B and Zhong D.2020. Simulation of the main-channel cross-section geometry of the lower Yellow River in response to water and sediment changes. Acta Geographica Sinica, 75(07): 1494-1511
王彦君, 吴保生, 钟德钰. 2020. 黄河下游主槽断面形态对水沙变化响应过程的模拟. 地理学报, 75(07): 1494-1511
Wang Z, Li J, Lin Y, Meng Y and Liu J. 2022. Grabriver: graph-theory-based river width extraction from remote sensing imagery. IEEE Geoscience and Remote Sensing Letters, 19(1-5
Wu G P and Liu Y B. 2016. Satellite retrieva of important ocean hvdrological parameters: an overview. Advances in Water Science, 27(01): 139-151
吴桂平, 刘元波. 2016. 海洋重要水文参数的卫星遥感反演研究综述. 水科学进展, 27(01): 139-151
Wu T, Li J, Li T, Sivakumar B, Zhang G and Wang G. 2019. High-efficient extraction of drainage networks from digital elevation models constrained by enhanced flow enforcement from known river maps. Geomorphology, 340(184-201
Xiao Y, Liu J, Qin C and Xu F. 2022. Two-dimensional numerical modeling of flow pattern and bed topography in channel bend. Environmental Modeling & Assessment, 27(4): 715-726
Xu M X, Lu Y Y, Tan X S and Shi J Q. 2021. Solid-state LiDAR sensor technology and bathymetry application of UAV. Electronic Measurement Technology, 44(15): 89-96
徐梦溪, 陆云扬, 谈晓珊, 施建强. 2021. 固态激光雷达传感器技术及无人机载测深应用. 电子测量技术, 44(15): 89-96
Xue Y, Qin C, Wu B, Li D and Fu X. 2022. Automatic extraction of mountain river surface and width based on multisource high-resolution satellite images. Remote Sensing, 14(10): 2370
Xue Y, Qin C, Wu B, Zhang G, Fu X, Ma H, Li D and Wang B. 2023. Simulation of runoff process based on the 3-D river network. Journal of Hydrology.
Yamazaki D, Trigg M A and Ikeshima D. 2015. Development of a global ~90m water body map using multi-temporal landsat images. Remote Sensing of Environment, 171(337-351
Yang D, Srikantha H and Katumi M. 2002. A hillslope-based hydrological model using catchment area and width functions / un modele hydrologique base sur les versants et sur les fonctions aire et largeur. Hydrological Sciences Journal, 47(1)
Yang F L, Li J B, Wu Z Y, Jin X L and Chu F Y. 2008. The Methods of High Quality Post-Processing for Shallow Multibeam Data. Acta Geodaetica et Cartographica Sinica, 04: 444-450+457
阳凡林, 李家彪, 吴自银, 金翔龙, 初凤友. 2008. 浅水多波束勘测数据精细处理方法. 测绘学报,04: 444-450+457
Yang J, Huang X and Tang Q. 2020. Satellite-derived river width and its spatiotemporal patterns in china during 1990–2015. Remote Sensing of Environment, 247(111918)
Yang X, Pavelsky T M,Allen G H and Donchyts G. 2020. Rivwidthcloud: an automated google earth engine algorithm for river width extraction from remotely sensed imagery. IEEE Geoscience and Remote Sensing Letters, 17(2): 217-221
Yang Y,Wen B,Wang C and Hou Y. 2019. Two-dimensional velocity distribution modeling for natural river based on uhf radar surface current. Journal of Hydrology, 577123930
Yang Y, Huang S, Qiu J, Liu C and Jiang W. 2022. A surface water mapping framework combining optical and radar remote sensing and its application in china. Geocarto International, 37(27): 17547-17564
Yao T D, Wang W C, An B S, Piao S L and Chen F H. 2022. The scientific expedition and research activities on the Tibetan Plateau in 1949-2017. Acta Geographica Sinica, 77(07): 1586-1602
姚檀栋, 王伟财, 安宝晟, 朴世龙, 陈发虎. 2022. 1949-2017年青藏高原科学考察研究历程. 地理学报, 77(07): 1586-1602
Yuan C, Gong P, Zhang H, Guo H and Pan B. 2017. Monitoring water level changes from retracked jason-2 altimetry data: a case study in the yangtze river, china. Remote Sensing Letters, 8(5): 399-408
Zhang B, Xiong W, Ma M, Wang M, Wang D, Huang X, Yu L, Zhang Q, Lu H, Hong D, Yu F, Wang Z, Wang J, Li X, Gong P and Huang X. 2022. Super-resolution reconstruction of a 3 arc-second global dem dataset. Science Bulletin, 67(24): 2526-2530
Zhang C, Sun A R, Hassan M A and Qin C. 2022. Assessing through-water structure-from-motion photogrammetry in gravel-bed rivers under controlled conditions. Remote Sensing, 14(21): 5351
Zhang H W, Zhang J H, Zhong D Y and Bu H L. 2011. Requlation strategies for wandering reaches of Lower Yellow River. Journal of Hydraulic Engineering, 42(01): 8-13
张红武, 张俊华, 钟德钰, 卜海磊. 2011. 黄河下游游荡型河段的治理方略. 水利学报, 42(01): 8-13
Zhang Y, Xian C, Chen H, Grieneisen M L, Liu J and Zhang M. 2016. Spatial interpolation of river channel topography using the shortest temporal distance. Journal of Hydrology, 542(450-462
Zhao Y, Wu P, Li J, Lin Q and Lu Y. 2019. A new algorithm for the automatic extraction of valley floor width. Geomorphology, 335:37-47
Zheng S, Wu B S and Tan G M. 2014. Review on the self-adjustment behavior of alluvial rivers based on the concept of macro system. Journal of Sediment Research,05: 73-80
郑珊, 吴保生, 谈广鸣. 2014. 基于宏观系统的冲积河流自动调整研究评述. 泥沙研究,05: 73-80
Zhou H, Liu S, Mo X, Hu S, Zhang L, Ma J,Bandini F, Grosen H and Bauer-Gottwein P. 2023. Calibrating a hydrodynamic model using water surface elevation determined from icesat-2 derived cross-section and sentinel-2 retrieved sub-pixel river width. Remote Sensing of Environment, 298113796
Zhu X,Song X,Leng P and Hu R. 2021. Spatial downscaling of land surface temperature with the multi-scale geographically weighted regression. National Remote Sensing Bulletin, 25(8):1749-1766
祝新明,宋小宁,冷佩,胡容海.2021.多尺度地理加权回归的地表温度降尺度研究.遥感学报,25(8):1749-1766
Zwenzner H and Voigt S. 2009. Improved estimation of flood parameters by combining space based sar data with very high resolution digital elevation data. Hydrology and earth system sciences, 13(5): 567-576
相关作者
相关机构