Views : 0 下载量: 0 CSCD: 0
  • Export

  • Share

  • Collection

  • Album

    • Deep learning based sea surface temperature reconstruction and its application on the spatio-temporal analysis of SST variation in the South China Sea

    • The latest research utilizes the I-DINCAE model and DNN correction to effectively reconstruct sea surface temperature data in the South China Sea, revealing its spatiotemporal variation characteristics and providing important basis for ocean research.
    • Pages: 1-17(2025)   

      Published Online:21 February 2025

    • DOI: 10.11834/jrs.20254493     

    移动端阅览

  • Sun Zhiwei,Li Yunbo,Sun Shaojie,Chen Siyu,Zhang Dianjun. XXXX. Deep learning based sea surface temperature reconstruction and its application on the spatio-temporal analysis of SST variation in the South China Sea. National Remote Sensing Bulletin, XX(XX):1-17 DOI: 10.11834/jrs.20254493.
  •  
  •  
Alert me when the article has been cited
提交

相关作者

SHAO Pan 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
GAO Ziang 三峡大学 湖北省水电工程智能视觉监测重点实验室;三峡大学 计算机与信息学院
LEI Xiangda 南京信息工程大学 遥感与测绘工程学院
GUAN Haiyan 南京信息工程大学 遥感与测绘工程学院
DONG Zhen 武汉大学 测绘遥感信息工程国家重点实验室
LI Jiankang 南京信息工程大学 遥感与测绘工程学院
ZHANG Guixin 南京信息工程大学 地理科学学院
ZHU Shanyou 南京信息工程大学 遥感与测绘工程学院

相关机构

Hubei Key Laboratory of Intelligent Vision Monitoring for Hydroelectric Engineering, China Three Gorges University
College of Computer and Information Technology, China Three Gores University
School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology
State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University
School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology
0