应用遥感方法研究超大型水库的环境影响
——以北京密云水库为例

林文浩 彭斌
(中国科学院地理研究所)
1986年4月24日收稿

研究超大型水库（总库容10^6 m^3以上）的环境影响，涉及自然和社会的广泛领域。对上述领域环境参数的调查和监测，不仅要力求具有连续性和准确性，而且还必须具有较大的区域性。已有资料表明，当代的遥感方法能迅速而经济地提取超大型水库环境影响的各参数，特别是水库建成前后，以及各运营阶段所产生的诸多环境要素：上游淹没、塌岸、盐渍化；下游地区的泥沙冲淤规律、河谷生态、环境要素动态规律，均可由多时相的航天与航空遥感图像逐步提取。还可将这些区域环境信息，以数据形式储存于计算机系统，供制定改善水库环境影响规划时调用。本文试以密云水库的环境影响为例，阐述遥感方法在该领域应用中的一些认识，供同行研究时参考。

一、研究超大型水库环境影响的遥感方法

以超大型水库环境影响为目标的遥感方法，可概括为图1所示的三个相互联系并互为印证的子系统进行信息提取。如图所示，每个子系统既相互独立又互为依据，一般认为，地学资料搜集分析与遥感资料（航空、卫星像片进行影像处理，或较合适比例尺的清晰影像等）是实现环境影响评价总目标的准备阶段；对样区的实况调查、研究，有目的有重点地进行图像增强和信息提取是初译阶段；由初译阶段建立的解译标志，进行影像的自然、社会环境各要素的信息提取是详译阶段。由此所得到的环境影响系列数据，为全面评价超大型水库环境影响提供了多时相的综合信息。

二、遥感图像中环境信息提取和应用技术分析

对遥感图像中环境信息提取采用的技术而言，尽管图像处理系统各异，功能多样，但就其数学基础及结果而论，大体可分为图像增强、变换、分类处理三大部分。这些方法在具体应用中，因受环境要素时、空分布差异性的控制，以及图像背景值等影响，因此，应以上述几种方法相互参照印证。密云水库影响区环境信息提取，主要使用S 101图像处理系统，采用如下技术。

1. 遥感图像中环境信息的增强

研究区水库上游白河流域丘陵裸地与旱作耕地为主的地域，图像密度差值小，信息离散度大，选取SCALE（比例拉伸），以增强信息层次与清晰度；采用HISTEQ（直方图均衡）

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
图 1 研究超大型水库环境影响的遥感方法流程图

Fig. 1. Diagram for studying environmental impacts by super-large reservoirs by using remote sensing method.
衡化），定出其地形。研究区上游山地类型和分区，地质构造复杂，信息离散度小，反差大，宜采用 HISL'N（正态化），减小高差起伏引起的图像高反差；为提取沿库岸湿润区或植被，则采用 LOG (对数拉伸)；实践证明，对阴影区环境要素信息的提取，用对数拉伸增强即可清晰呈现。

多波段图像密度不同的 RAT (比值)和 MINU (减法)、ADD (加法) 及 MUL (乘法) 算术运算，可增加环境信息分辨 solidarity。如把密云水库环境影响区影像的 4 个波段密度作 10 种比值分析。从密度比值成果 (表 1) 可以看出，(D_1 - D_2)/D_2 与 D_4/(D_4 + D_1) 提取的环境信息与实地考察最为相近，并且浓线清晰。上述两种密度比值在图像中基本一致，只是值、色彩互异而己。

需要指出的是，在 (D_1 - D_2)/D_2 比值图中，虽属同一类地区，但所代表的降雨损失 (径流 - 降雨 - 降雨损失 - 间雨蒸发) 情况却大不相同，如图像中属同一类的丘陵和裸露耕区，丘陵区降雨损失小，而裸露耕地降雨损失则很大。这种情况，在其它比值图及下面的反演图中加以说明。

表 1 密度比值成果

<table>
<thead>
<tr>
<th>密度比值</th>
<th>辨别种类</th>
<th>地类清晰顺序</th>
<th>像素清晰顺序</th>
<th>实地对照准确率(%)</th>
<th>评价</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_1 - D_2)/D_2</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>90</td>
<td>好</td>
</tr>
<tr>
<td>D_4/(D_4 + D_1)</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>90</td>
<td>好</td>
</tr>
<tr>
<td>(D_4 + D_4)/(D_4 + D_2)</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>80</td>
<td>较好</td>
</tr>
<tr>
<td>D_3/D_4</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>75</td>
<td>较好</td>
</tr>
<tr>
<td>D_4/(D_4 + D_3)</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>70</td>
<td>中等</td>
</tr>
<tr>
<td>D_4/D_4</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>70</td>
<td>中等</td>
</tr>
<tr>
<td>(D_4 + D_4 + D_4 + D_4)</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>70</td>
<td>较差</td>
</tr>
<tr>
<td>(D_1 - D_1)/D_4</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td>70</td>
<td>较差</td>
</tr>
<tr>
<td>D_1/D_4</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>65</td>
<td>劣</td>
</tr>
<tr>
<td>(D_1 - D_1)/(D_1 + D_1)</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>65</td>
<td>劣</td>
</tr>
</tbody>
</table>

注: D_4 表示第 5 波段密度，依次类推。

将要提到的监督分类、无监督分类图中都有，说明不同地物可以有几乎相同的光谱特性，也表明用精密仪器处理信息，不能代替人们的实地考证和综合分析。遥感信息数字化分析可以是某项工作的重要手段，但决不能排斥其它手段。

通过遥感图像增强，可以达到提取一般环境信息的目的。

为增强自然环境信息边界、纹理、地理形迹等特征，可采用空间滤波技术，在 S 101 系统中，以原图像与一个 N × N 的活动掩模核进行卷积 LONV 运算，起到增强作用，从而探明水库影响区域库岸滑坡、崩塌等环境地质现象，连密云水库库岸后适于垂、枯水期，蓄水量不足，因此该现象不明显。

2. 遥感图像的变换

研究区主要应用 KL 变换，处理目的在于归并、聚焦信息。例如采用 D_7/D_5 与 D_4/D_5，PCI 图像合成，把水库影响区的环境信息有规律地聚集在不同的地貌单元，如林地多在库区及上流的山地背阳处 (北坡)，水浇地多集中在水库下游的渠道两旁，而 果林主要分布于上游滩、白河两岸丘陵地带等。该方法弥补了某些环境信息对一般拉伸增强效果
3. 环境信息的监督分类与非监督分类

监督分类与非监督分类相应地称之为 MAX IMUM LIKELYHOOD CLASSIFICATION（最大似然比分类）和 MINDIST（最小距离分类）。例如密云水库影响区实地考察，选取了 8 种典型地物，输入 S101 系统，建立各训练区的判别函数，然后将观测到的点的大小，对任一像元，判别此像元统计特征与判别函数的大小，最大者则为判别函数所示地物，利用 S101 系统，可选两、三分钟即可给出分类结果。

非监督分类系采用聚类分类分析法，此法首先自动形成若干波谱空间中心，然后以任一像元与之相比，其中距离最小且误差小于阈值者（一般采用偏差 $\sigma < 3$），即为某一类，我们所作的是四维密度函数的空间分布，并且假定待分类像元在波谱空间上是独立的正态分布，因此，每类中心位置都有 4 个分量，每个分量处理都要小于阈值。故采用 S101 系统软件进行非监督分类更加快速、简便。

从对样区所进行的两种分类成果看，非监督分类分类的类别较多，分 10 种，但分布零乱，轮廓不清；监督分类可将样区划为 8 种，但边界比较清晰，分布合理，不足之处是样区内约 5% 分辨不清（主要是山谷阴影区），但对水域可根据地貌特点加以补充。我们的体会是，对密云水库区域环境影响而论，分类划分毋须太细，唯要求准确合理，因此监督分类优于非监督分类，而分类窗口选择的合理性，是监督分类优劣的关键。样区波段波速信息与全色航空像片资料完全相符。

4. 流域多光谱信息的分析

为将样区遥感信息提取运用于全区域，我们将全区域各季节的 8 幅波段的密度分割，所用密度分割仪为日本 Phosdac-1200 型。从分割结果看，冬季植被未萌发时，彩色分割片能将岩石裸露地区与农田区分开来，尤其 MSS 图像分割结果较好，并与样区相符合。

为校核以上结果，可利用不同日期的 4 幅假彩色合成片作目视解译，这样就得出水库环境影响区的地理要素分类雏形，为详细解译做了必要的准备。

三、环境信息提取结果分析

1. 自然环境信息提取

(1) 由卫星多光谱图像宏观地分析区域地质构造，效果很好，已被广泛使用。卫星图像与彩色红外航空像片和侧视雷达信息相结合分析地表地质构造和掩埋断裂带，以及用高频率波等处理技术显示线性构造，除应用于密云水库外，还成功地用于长江三峡和黄河小浪底水库诱发地震地质构造背景的分析。

(2) 水库环境影响区的地貌分析。依据遥感信息的宏观分析，参照地形图和数据资料，可建立地貌和有关环境系统的相关模型，如地貌与水库不同水位的淹没相关模型等。上述分析已开发用阶段，收到良好的效果，从前后十年的卫星图像已显示密云水库水位有显著下降，水库淹没范围有明显缩小。

(3) 水库淹没区的土壤环境分析。用遥感方法分析水库淹没区土壤类型及分布、土壤
侵蚀程度以及土地利用状况、动态规律等已取得成功经验，但其分类特征应与遥感方法相适应。如我们所知云水水库影响的上游白河流域的土壤分为7种4个组合，而土壤侵蚀规律则可随每次洪水而异，可由多时相的遥感图像予以分析。土地利用状况则随季节而异，在遥感图像上，特别是彩色红外像片上显示清晰。

（1）库区及上、下游水文、气候要素。遥感方法对水库产生的淹没、塌岸、泥沙运动规律，水域变化，流速调节等水文要素，进行定性与定量的分析，但只有结合地形数据模型与样区采集的泥沙样品分析，才可进行定量的分析。遥感方法在消除洪涝威胁，改善水文、气候环境方面的功能，可通过模型的其它间接指标和实地调查与收集、分析水文及上游各水文站实测资料，以及建立针对性强的数据采集观测数据，如，史料记载，潮白河下游顺义一带的洪水为患，1939年的一次大洪水，潮白河苏庄处的最大流量15000m³/s，冲毁了苏庄过河道，冲决了北运河堤防；水库也因山洪暴涨流量达2400m³/s，酿成16个村庄和10多万亩农田被淹。1959年修建密云水库后，从根本上消除了洪水带来的危害，库区及下游库区流量大于20000m³/s的洪水有5次，1966年水库最大流量达3650m³/s，通过水库削峰，下泄仅309m³/s，怀河水库上游，1972年发生特大洪水，入库洪峰流量达3970m³/s，下泄最大流量仅312m³/s，水库调蓄削峰92%。水库建成后，经过历年供排水系配套，使250万亩易涝地区的230万亩得以初步治理，其中约有100万亩达10年一遇标准，下游地区免受洪涝面积平均每年约64万亩。从1959年至1984年，累计减免下游地区洪涝灾害的面积约1600万亩；以每亩地因洪涝灾害减产100kg计，则可避免减免粮食16亿kg。

水库运营以来改善了库区，特别是大坝下游的水文环境，而对气候环境的改善则局限库区周围5—10km的狭窄地带。

大坝下游水文环境得到了改善，改善了原河川径流年内年际分布，多年平均枯水期出库水量比入库水量多约1.7倍，旱情严重的4—5月，出库水量比入库水量多年平均多约8倍，特别是旱情最严重的1981年4—5月，水库给下游的水量比天然来水量甚至多21.9倍，这样既保证了下游工农业生产的需求，又改善了下游区域的生态环境。入库来水量达3200m³，占入库水量的3%以下；自1961年至1984年24年平均出库水量为入库水量的52%，只有1968年、1980年、1984年三个特枯年期，因汛期来水太少，才出现出库总量超过入库水量的反常现象。1973年7—9月出库水量17.89×10⁸m³，而入库水量仅0.10×10⁸m³，几乎把汛期洪水全部拦蓄在水库中，以供该区的枯期用水；1974年汛期入库水量为17.41×10⁸m³，出库为入库水量的19%，把拦蓄的汛期洪水供给1975年枯期，尤其是在旱情严重的4—5月，多供下游水量达10.5×10⁸m³。这种对原河川径流的年内、年际间天然河川径流分配的不均匀性加以重新分配的功能，大大地减弱了大坝下游汛期洪水中可能带来的洪涝灾害，把汛期多余的弃水拦蓄于水库，供下游旱季之用，既达到充分地利用宝贵的水资源，又极大地改善了原河川径流年内年际分配。

位于非多沙河流的密云水库运营以来，入库泥沙量约为6.89×10⁸t，不构成水库运营的主要威胁。由于供水方式的改变，使下游泥沙年内分配均匀化，为稳定下游河槽提供了条件。潮白河苏庄站修库前，汛期4—9月输沙量占全年总量的95.8%，而修库后降至
对库区及周围气候环境的影响是：

（1）改善了库区和沿岸的热环境 从实地考察、调查、简易观测等收集的有关资料分析得出：密云、官厅二库的热环境，随季节有明显差异，库区的年平均气温比库前低约 0.5℃，且随季节异，一般地说，冬春季节月平均气温低约 1—2℃，夏季六、七两月偏高 0.1—0.4℃，8 月起至秋季升高约 0.5—1.0℃；水库沿岸 5—10km 以内的地带年平均气温大约还升高，10km 以远地区热效率不明显。气温日较差明显减小，面密沿岸平均要小 2—3℃；而沿岸 5—10km 以内的地带又比围外小 3—4℃。库区年平均最高气温和极端最高气温均低于水前，平均最低气温和极端最低气温也比水库前，无霜期延长。这些影响对改善库区及沿岸的热效率起到了积极的作用。

（2）减少库面降雨，增加上游山区降雨 实地观测到出山口的热雷雨到达库面后大都减弱（但因缺乏观测数据无法定量）。据有关资料分析，库区沿 5—10km 的地带内降水量明显减少不明显，一般在 5% 以下，而水库周围地势高的处所，尤其在周围山区降水量则略有所增加。

（3）冬季湖陆风明显 库后库面的风速比库前大增加 30%，冬季离水库岸边 5—10km 的地带，湖陆风明显。在大坝附近，白天主要刮来自库面的风；夜间则由陆面刮向库面。由于水库风速加大（约加大 30—40%），冬春季节风面的大风次数也相应增多，但距库岸 5—10km 以外，湖陆风对其影响就不甚明显。

（4）蒸发加强、湿度增大 巨大水面加强了蒸发（比陆面相对增加约 90%），使空气的相对湿度和水蒸汽压有所提高。据有关资料分析，库区沿 10km 以内区域，水蒸汽压提高 10—15%。春季湿度可相差 20—30%。相对湿度的日变幅，沿库地区可 20—50%，而面（水库上空）仅为 10—20%。

（5）湖面层结稳定，减弱热雷雨强度 实地观测，夏季密云水库湖面低云量，要比周围陆地上空低云量少 10% 左右；春季库面的频率又比库陆为重。又由于夏季库面上空层结较库陆稳定，因此热雷雨、冰雹经过库面时总是被减弱，强度变小。

综上所述，密云水库对周围气候环境的影响，尽管波及范围仅至沿库岸周围 10 余 km 以内，但无疑起到了改善本区小气候的作用。

⑥ 植被要素。水库影响区的植被分布可由卫星多光谱影像、结合航空彩色红外图像予以提取，其动态规律（种类、长势、演替）可由多时相（尤其是不同季节）的图像获得。国内外有关资料表明，上述遥感图像采用计算机集群分类，精度可达 70%。我们对密云水库上游所进行的分析，也得出了相似的结果。

⑥ 水环境信息分析。分析卫星与航空像片加热红外波段图像，可测定表层土壤的含水量，它为研究水库水文影响区可能产生的盐渍化、潜育化提供依据。经图像分析和实地调查表明，密云水库水文影响区土壤盐渍化、潜育化并不严重。分析热点红外遥感图像，对水域的热污染及油污监测已收到良好效果。利用彩色近红外航空像片可测定库区及水文影响区内水域污染状况，尤其对调查污染源及其扩散的时空变化规律，此地面测试有更为简捷与准确的优点，因密云水库上游无大工农业及天然污染源，因此，遥感图像上这一信息的时、空变化均不大。

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
① 生态环境。通过遥感图像解译获取库区及上下游影响区生态环境的动态规律（时、空分布，植被群落演替等），对位于干旱半干旱的我国北方地区水库说来，由于大量拦截河川径流，特别是枯季径流，未能提供水库下游河段足够的保槽流量，除汦期外，宽阔的河谷滩地在遥感图像上呈明显的干枯状态，河谷滩地及两岸的生态环境发生重大变化（河槽两岸树木稀疏，农田生态系统，由喜水群落，演替为旱作群落）。而由水库提供的下游大片灌区（333万亩），则绿树成荫，阡陌纵横，作物繁茂，灌区干渠两旁农田多以喜水群落替代库前旱作群落。通过对下游河谷区与水库效益区的生态环境图像解译，可比较准确地评价水库对广大下游地区的生态环境起的保护和改善作用。

为保障工农业和城镇需水，1956—1980年间共供水约260.2×10^6m^3。确保了该区工农业生产的持续、稳定、高速的发展和良好的生态环境。

因施农业灌溉，原盐碱地面积显著减少，程度变轻。据不完全统计，改善盐碱地约25万亩。

开发河川水电，消除热电工业的热污染。密云水库建成后，累计为电力系统提供电力80×10^6kW·h。

水库的广阔水面（正常蓄水位相应的水面面积为100km^2以上），汛期洪水带入库内丰富的营养，形成良好的水生生态环境，为淡水养殖提供了前提条件。仅1961—1984年统计，该库累计为首都市场提供鲜活鱼约2×10^8kg。

造就美如画卷的休憩场所。库区、大坝以及水利枢纽所属水工建筑物，沿岸建筑群，人工园林，果木等交织成一幅城市园林无法比拟的自然画卷，为首都人民提供了进行各种形式的休息，组织多种形式文体活动的良好场所。

提供了开拓下游河谷滩地的生态环境。密云水库大坝堵截河段，消除下游洪患之灾，从而为开发该区的河谷滩地创造了条件。当密云水库抵御百年一遇的洪水时，入库洪峰达9850m^3/s，出库下泄流量为1200m^3/s，在此泄量之上的河谷滩地均可垦殖。据此推算，在安全泄量以上可开拓的滩地达100多万亩。

为本市河湖补水，改善了首都环境。本市现有公园面积64×10^6m^2，以每年两次（“五·一”、“十·一”）定期补换新水计算，密云水库建成后累计向首都公园湖泊提供水量约2×10^8m^3（部分来自官厅水库）。正是由于这些清洁水源补给了首都公园的污水，才得以维持其优美的生态环境。

同样，可通过研究水库影响区的植物群落演替，定期确定动物活动与繁殖场所，从而分析水库运行阶段动物的新的可能生存环境。

2. 社会环境信息提取

① 居民区。由多时相卫星像片与航空遥感图像可一目了然地分析水库影响区居民点的动态变化，从而间接地印证水库导致的环境效应。

② 城镇、交通。用遥感方法研究水库影响区的城镇与交通变化，既可宏观、快捷地得出水库环境功能。例如由多时相的遥感图像分析得出水库下游的城镇规模及交通网的发展速度，就能直接地影响水库运行管理方案的制定和实施。

③ 风景区开发。利用遥感图像可以解释适合旅游的风景区的位置、规模以及大致的开发方向，从而为全面、合理性开发旅游资源提供依据（因该库为北京的重要水源基地，所
以此开发受严格限制，目前仅开放“内湖”为旅游区。

④ 水库运营监督。由于遥感图像解译可迅速、准确的提供宏观资料，因此多时相的遥感图像，使人们及时了解水库运营期间的状况和问题，对水库运营进行监督。

3. 存在的问题

① 范围问题。用遥感方法如何确定超大型水库对环境影响的范围，目前尚处于探讨阶段。但借助多时相遥感资料，特别是建库前后的遥感资料和部分地面实测资料进行对比分析，可得出建库前后自然环境和社会环境的变化幅度，从而确定超大型水库对自然环境和社会环境的可能影响范围。

② 水文、气象环境影响的定量问题。遥感方法对水文、气象环境影响的定量分析也处于试验探索阶段。就目前的技术条件而言，即使对某些要素如降雨、侵蚀、泥沙、地下水位上升、水、土地温湿度等可用遥感方法获取，但严格定量尚需结合地面的相应要素的观测资料分析。

③ 遥感资料的连续性问题。评价超大型水库所产生的自然与社会环境的影响，需要多年连续不断的遥感监测资料，恰恰这一重要条件目前不能予以保证。因此给进行准确评价工作带来困难。

四、结语

通过遥感信息提取，结合收集、分析地面实测资料不难看出：北京密云超大型水库对库面及下游生态环境所起的良好保护与改善作用。而水库周边区对上游所产的浸没，地下水位抬升（对库而言并不严重），以及因水库未放保流量给下游河谷两岸地带酸成的生态环境不利影响，是可以通过相应的对策以及改善运营加以解决的。

遥感技术在单项环境因子评价方面的应用已有许多成功的经验（如水面油污监测评价等），但应用于超大型水库环境影响的综合评价尚处于尝试阶段。超大型水库的环境影响波及上、下游广大区域（如对水文环境的影响面积可达数千至数万 km²；长度可达数百至数千 km），而且影响内容涉及整个生态系统各要素，因此用传统的技术手段和一般的研究方法几乎是无法实现的。随着我国陆地卫星的成功发射，大量多时相图像、磁带数据获得的环境信息，为全面了解和综合评价超大型水库的环境影响提供了大量可靠的信息来源。

遥感方法的采用，将促进超大型水库环境影响的综合评价，使传统的单因素定性分析向多因素、多时相的定量和定位分析发展，从而弥补了以往常规方法在时、空上无法解决的问题。随着我国航天与航空遥感技术的不断进步，特别是数据库的建立和技术发展，为环境信息的采集、数字化、贮存和自动传输提供理论依据与付诸实用的可能性，它将为我国环境监测、评价以及制定相应的保护与改善对策提供重要而经济的手段。

参考文献

[1] 程义、林文、张宏、白河洪水总量的遥感估算，自然资源，(2)83—87页，1985年。
A STUDY ON ENVIRONMENTAL IMPACTS OF A
SUPER-LARGE RESERVOIR BY USING REMOTE
SENSING METHOD
—A CASE STUDY ON MIYUN RESERVOIR OF BEIJING

Lin Wenpan Peng Bin
(Institute of Geography, Academia Sinica)

Abstract

This paper proposed a method for studying environmental impacts of a super-large reservoir by using remote sensing method. The method consists of three subsystems corroborating each other. A case study was conducted on Miyun reservoir area of Beijing. For which various information extraction techniques were employed and results then assessed. In combination with analysing on ground-true data, the governing factors relating to the regional environment of the reservoir were thoroughly evaluated on a qualitative and partially quantitative base. A conclusion is drawn that Miyun reservoir has a positive effect on and an improvement function for its surrounding ecological environment.

The paper revealed a broad future for using remote sensing technique in analysing impacts of super-large reservoirs. At the meantime, some limitations and its possible solutions of using such a technique were also discussed.