遥感模型多参数反演相互影响机理的研究
Research on the Mutual Effect of the Parameters on Inversion of Canopy Reflectance Model
- 2008年第1期 页码:1-8
纸质出版日期: 2008
DOI: 10.11834/jrs.20080101
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2008 ,
扫 描 看 全 文
[1]姚延娟,刘强,柳钦火,李小文.遥感模型多参数反演相互影响机理的研究[J].遥感学报,2008(01):1-8.
YAO Yan-juan1, LIU Qiang1, LIU Qin-huo1, et al. Research on the Mutual Effect of the Parameters on Inversion of Canopy Reflectance Model[J]. Journal of Remote Sensing, 2008,(1):1-8.
遥感数据具有覆盖范围广、时间与空间分辨率高的特点
被广泛应用于提取区域范围内的一些重要的生物物理参数。为提高参数的提取精度
需要制定正确的反演策略。了解影响参数提取精度的因素、反演过程中各反演参数之间如何相互作用是制定合理反演策略的关键。本文通过数学推导与物理机理的分析
证明了影响参数反演精度的因素不但有冠层反射率数据的质量
还有反演过程中参与反演的未知参数的个数、参与反演的每个参数的敏感性及各个参数敏感性之间的相关性。最后通过对反演不同参数个数、不同数据质量进行了叶面积指数反演的精度分析
验证影响参数反演精度的各个因素。
Some bio-physical parameters(e.g.leaf area index
LAI) are often inverted using remote sensing data for its large cover scope
high temporal and spatial resolution.The common way of mapping LAI is through the inversion of physically based canopy-reflectance(CR) models using the optimization methods.The information of remote sensing data is usually not enough for the LAI inversion;furthermore
the inversion problem is ill-posed because of many unknown parameters and the relatively insufficient information in remote sensing data.It is necessary to make suitable inversion strategy(such as which parameter(s) should be inverted) for high accuracy of parameters estimation.We should learn the factors which affect the inversion result in order to design the suitable inversion strategy.Different from the research of parameter sensitivity for suitable inversion strategy
we made progress in the inversion process.For the information of the inversion process
some key points are needed to investigate
such as the factors affecting the parameters estimation
the mutual effect of different parameters in inversion process and so on.In the paper
we investigated the factors which affect the parameter estimation from the inversion process aiming at directing the parameter inversion.One of the accuracy indices for the inversion result is the root mean square error(RMSE).For the inversion result
the smaller RMSE is
the higher inversion accuracy is.We investigated the formulae of the RMSE based on the physically based canopy-reflectance model.Through mathematical formulae and physical mechanism
we can know that the factors affecting the RMSE consist of canopy reflectance data quality
the sensitivity of parameters and the correlation of the parameter sensitivity.That is to say
as to the sensitivity of parameters
not only the parameter sensitivity but the correlation of the parameter sensitivity the factors affect the parameters inversion accuracy.In other words
the relative sensitivity of the parameter has effect on the parameter inversion.We should make two kinds of progress for high accuracy parameter inversion.One is about the quality of canopy reflectance data.Remote sensing data are often contaminated with noise from various sources
such as radiation calibration
atmosphere correction
geometric registration and some random noises.The other is the sensitivities of the parameters and the correlation of the parameter sensitivity.We can make the suitable inversion strategy based on both the quality of the canopy reflectance data and the parameters sensitivities.The CR model is the SAIL model and the inversion method is the modified least square method in this paper.We validated the factors which affect the LAI inversion accuracy through LAI inversion based on simulated CR data sets.
冠层反射率模型反演精度敏感性分析
canopy reflectance modelinversion accuracysensitivity analysis
相关作者
相关机构