PENG Man, DI Kaichang, LIU Zhaoqin. Adaptive Markov random field model for dense matching of deep space stereo images[J]. Journal of Remote Sensing, 2014,18(1):77-89.
PENG Man, DI Kaichang, LIU Zhaoqin. Adaptive Markov random field model for dense matching of deep space stereo images[J]. Journal of Remote Sensing, 2014,18(1):77-89. DOI: 10.11834/jrs.20133089.
This paper proposes an adaptive Markov Random Field( aMRF) model for the dense matching of deep space exploration images
which usually lack textures. Compared with traditional MRFs
the approach improves dense matching accuracy by a combination of adaptive disparity range predictions
adaptive matching windows
and adaptive weight coefficients. Furthermore
aMRF reduces the disparity search range while accurately preserving disparity discontinuities. Real rover images from the Mars E xploration Rover mission and Chang’E lunar orbiter images experiments demonstrate the effectiveness of the proposed method.
关键词
深空探测密集匹配马尔科夫场自适应
Keywords
deep space explorationdense matchmarkov random fieldadaptive