面向类型特征的自适应阈值遥感影像变化检测
Adaptive threshold change detection based on type feature for remote sensing image
- 2020年24卷第6期 页码:728-738
纸质出版日期: 2020-06-07
DOI: 10.11834/jrs.20208328
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-06-07 ,
扫 描 看 全 文
刘红超,张磊.2020.面向类型特征的自适应阈值遥感影像变化检测.遥感学报,24(6): 728-738
LIU Hongchao,ZHANG Lei. 2020. Adaptive threshold change detection based on type feature for remote sensing image. Journal of Remote Sensing(Chinese),24(6): 728-738
为了实现两个不同年份单时相遥感影像之间的土地覆盖变化检测,提出了一种基于土地覆盖类型特征自适应确定阈值的遥感影像变化检测方法。以2015年土地覆盖数据为基础,综合2013年和2015年Landsat 8-OLI影像数据,首先,采用时相不变点群法TIC(Temporally Invariant Cluster)保证了两期影像辐射水平的一致性。其次,对两期影像进行多尺度分割,并在各级尺度下构建分割对象的变化向量。然后,采用最大类间方差的方法分别进行单一变化阈值变化检测以及基于土地覆盖类型的多阈值变化检测分析,并利用目视解译样点进行精度验证与评价。结果表明:(1)单一阈值变化检测结果的总体精度为79.6%,Kappa系数为0.601,多阈值变化检测结果的总体精度为87.2%,Kappa系数为0.741,多阈值变化检测具有更高的精度。(2)进一步逐土地覆盖类型精度评价可知,多阈值变化检测能在一定程度上减弱物候期的影响,具有更高的稳定性。该研究以土地覆盖数据为底图,逐类别的选取变化检测阈值,提高了变化区域检测的精度,在大范围高效更新土地覆盖数据的应用中具有一定的参考价值。
Change detection with single-phase remote sensing image between two different times is widely used in land cover
urban expansion
coral reef health
forest fire events
and deforestation. The most important step in change detection is to determine the change threshold value
which is used to distinguish change and no-change areas. Traditional change detection methods usually determine only one threshold. These methods neglect the difference of spectral value range between different land cover types. Even the same land cover types may have great differences. For example
areas of farmland that have been harvested are different from areas that have not been harvested. Thus
we propose an adaptive multi-threshold value remote sensing image change detection method that is based on land cover type feature.
Land cover data for 2015 and two Landsat 8 OLI images for 2013 and 2015 were collected. First
the method used Temporally Invariant Cluster (TIC) to ensure the consistency of the radiometric level of the two images. To avoid salt-and-pepper noise
we segmented the remote sensing image with multiscale segmentation algorithm. The segmentation spatial scales 200
150
and 100 were used for different land cover types. Change vectors of the image objects at different segmentation spatial scales were then constructed. The maximum inter-class variance method is used to determine the change detection in single and multi-threshold values that are based on land cover types. Finally
we collected 500 samples by using visual interpretation and subsequently conducted accuracy assessment on the result of single and multi-threshold value change detection.
The experiment outcomes showed that the multi-threshold value change detection method had higher accuracy and greater stability than the single threshold value change detection. The total accuracy of the multi threshold value change detection is 87.2%
whereas the total accuracy of the single threshold value change detection is 79.6%. The Kappa coefficient is 0.741 and 0.601
respectively. To compare the proposed multi- threshold values method with the traditional single threshold value method
we conducted further accuracy assessment with each land cover type. Results showed that the producer’s accuracy of the no-change area in farmland
water
as well as developed and barren land was improved. Similarly
the user’s accuracy of the change area in farmland and water was enhanced. The multi-threshold values change detection method weakened the influence of phenology phase to an extent and has better applicability.
The TIC relative radiometric normalization method could overcome the shortcomings of traditional visual interpretation for selecting time-invariant pixels. The method avoids the influence of subject factors and can normalize images accurately and efficiently. In addition
the multiscale segmentation algorithm can provide different spatial segmentation scales to avoid over and under segmentation problems. The proposed method involves the change vector analysis driven by different thresholds based on land cover type rather than a single threshold value. The proposed method has improved the accuracy of the change detection and provided a reference for the application of efficiently updating of land cover data in large-scale area.
遥感土地覆盖变化检测时相不变点群多尺度分割相对辐射校正最大类间方差
remote sensing land coverchange detectiontemporally invariant clustermultiscale segmentationrelative radiometric correctionmaximum inter-class variance
Blaschke T . 2010. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1): 2-16 [DOI: 10.1016/j.isprsjprs.2009.06.004http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004 ]
Chen X X, Vierling L and Deering D . 2005. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sensing of Environment, 98(1): 63-79 [DOI: 10.1016/j.rse.2005.05.021http://dx.doi.org/10.1016/j.rse.2005.05.021 ]
Dian Y Y, Fang S H and Yao C H . 2016. Change detection for high-resolution images using multilevel segment method. Journal of Remote Sensing, 20(1): 129-137
佃袁勇, 方圣辉, 姚崇怀 . 2016. 多尺度分割的高分辨率遥感影像变化检测. 遥感学报, 20(1): 129-137 [DOI: 10.11834/jrs.20165074http://dx.doi.org/10.11834/jrs.20165074 ]
Grimm N B, Faeth S H, Golubiewski N E, Redman C L, Wu J, Bai X and Briggs J M . 2008. Global change and the ecology of cities. Science, 319(5864): 756-760 [DOI: 10.1126/science.1150195http://dx.doi.org/10.1126/science.1150195 ]
Hansen M C and Loveland T R . 2012. A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment, 122: 66-74 [DOI: 10.1016/j.rse.2011.08.024http://dx.doi.org/10.1016/j.rse.2011.08.024 ]
Huang W, Huang J L, Wang L H, Hu Y X and Han P P . 2016. Remote sensing image change detection based on change vector analysis of PCA component. Remote Sensing for Land and Resources, 28(1): 22-27
黄维, 黄进良, 王立辉, 胡砚霞, 韩鹏鹏 . 2016. 基于PCA的变化向量分析法遥感影像变化检测. 国土资源遥感, 28(1): 22-27 [DOI: 10.6046/gtzyyg.2016.01.04http://dx.doi.org/10.6046/gtzyyg.2016.01.04 ]
Hussain M, Chen D M, Cheng A, Wei H and Stanley D . 2013. Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80: 91-106 [DOI: 10.1016/j.isprsjprs.2013.03.006http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006 ]
Jin S M, Yang L M, Danielson P, Homer C, Fry J and Xian G . 2013. A comprehensive change detection method for updating the national land cover database to circa 2011. Remote Sensing of Environment, 132: 159-175 [DOI: 10.1016/j.rse.2013.01.012http://dx.doi.org/10.1016/j.rse.2013.01.012 ]
Linke J, McDermid G J, Pape A D, McLane A J, Laskin D N, Hall-Beyer M and Franklin S E . 2009. The influence of patch-delineation mismatches on multi-temporal landscape pattern analysis. Landscape Ecology, 24(2): 157-170 [DOI: 10.1007/s10980-008-9290-zhttp://dx.doi.org/10.1007/s10980-008-9290-z ]
Liu H C, Liang Y and Zhang X W . 2017. Winter wheat area extraction and yield estimation using multi-temporal images. Remote Sensing Information, 32(5): 87-92
刘红超, 梁燕, 张喜旺 . 2017. 多时相影像的冬小麦种植面积提取及估产. 遥感信息, 32(5): 87-92 [DOI: 10.3969/j.issn.1000-3177.2017.05.014http://dx.doi.org/10.3969/j.issn.1000-3177.2017.05.014 ]
Lu D, Mausel P, Brondízio E and Moran E . 2004. Change detection techniques. International Journal of Remote Sensing, 25(12): 2365-2401 [DOI: 10.1080/0143116031000139863http://dx.doi.org/10.1080/0143116031000139863 ]
Lunetta R S, Knight J F, Ediriwickrema J, Lyon J G and Worthy L D . 2006. Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105(2): 142-154 [DOI: 10.1016/j.rse.2006.06.018http://dx.doi.org/10.1016/j.rse.2006.06.018 ]
Morisette J T and Khorram S . 2000. Accuracy assessment curves for satellite-based change detection. Photogrammetric Engineering and Remote Sensing, 66(7): 875-880
Paolini L, Grings F, Sobrino J A, Jiménez-Muñoz J C and Karszenbaum H . 2006. Radiometric correction effects in landsat multi-date/multi-sensor change detection studies. International Journal of Remote Sensing, 27(4): 685-704 [DOI: 10.1080/01431160500183057http://dx.doi.org/10.1080/01431160500183057 ]
Pielke R A . 2001. Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Reviews of Geophysics, 39(2): 151-177 [DOI: 10.1029/1999RG000072http://dx.doi.org/10.1029/1999RG000072 ]
Schott J R, Salvaggio C and Volchok W J . 1988. Radiometric scene normalization using pseudoinvariant features. Remote Sensing of Environment, 26(1): 1-14, IN 1, 15-16 [DOI: 10.1016/0034-4257(88)90116-2http://dx.doi.org/10.1016/0034-4257(88)90116-2 ]
Sezgin M and Sankur B . 2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging, 13(1): 146 [DOI: 10.1117/1.1631315http://dx.doi.org/10.1117/1.1631315 ]
Tewkesbury A P, Comber A J, Tate N J, Lamb A and Fisher P F . 2015. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sensing of Environment, 160: 1-14 [DOI: 10.1016/j.rse.2015.01.006http://dx.doi.org/10.1016/j.rse.2015.01.006 ]
Toure S I, Stow D A, Shih H C, Weeks J and Lopez-Carr D . 2018. Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sensing of Environment, 210: 259-268 [DOI: 10.1016/j.rse.2018.03.023http://dx.doi.org/10.1016/j.rse.2018.03.023 ]
Turner B L, Lambin E F and Reenberg A . 2007. The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 104(52): 20666-2067 1 [DOI: 10.1073/pnas.0704119104http://dx.doi.org/10.1073/pnas.0704119104 ]
Wu B F, Bao A M, Chen J S, Huang J L and Li A N . 2017. China Cover. Beijing: Science Publishing Press: 170-179
吴炳方, 包安明, 陈劲松, 黄进良, 李爱农 . 2017. 中国土地覆被. 北京: 科学出版社: 170-179
Xian G and Homer C . 2010. Updating the 2001 national land cover database impervious surface products to 2006 using landsat imagery change detection methods. Remote Sensing of Environment, 114(8): 1676-1686 [DOI: 10.1016/j.rse.2010.02.018http://dx.doi.org/10.1016/j.rse.2010.02.018 ]
Xian G, Homer C and Fry J . 2009. Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment, 113(6): 1133-1147 [DOI: 10.1016/j.rse.2009.02.004http://dx.doi.org/10.1016/j.rse.2009.02.004 ]
Xu Y D, Yu L, Zhao F R, Cai X L, Zhao J Y, Lu H and Gong P . 2018. Tracking annual cropland changes from 1984 to 2016 using time-series Landsat images with a change-detection and post-classification approach: Experiments from three sites in Africa. Remote Sensing of Environment, 218: 13-31 [DOI: 10.1016/j.rse.2018.09.008http://dx.doi.org/10.1016/j.rse.2018.09.008 ]
Yang X T, Liu H P and Gao X F . 2015. Land cover changed object detection in remote sensing data with medium spatial resolution. International Journal of Applied Earth Observation and Geoinformation, 38: 129-137 [DOI: 10.1016/j.jag.2014.12.015http://dx.doi.org/10.1016/j.jag.2014.12.015 ]
Yu W J, Zhou W Q, Qian Y G and Yan J L . 2016. A new approach for land cover classification and change analysis: integrating backdating and an object-based method. Remote Sensing of Environment, 177: 37-47 [DOI: 10.1016/j.rse.2016.02.030http://dx.doi.org/10.1016/j.rse.2016.02.030 ]
Yu X M and Zou Q . 2012. Methods of Radiometric Normalization for Multi-Temporal Remote Sensing Images: a review. Geomatics and Spatial Information Technology, 35(6): 8-12
余晓敏, 邹勤 . 2012. 多时相遥感影像辐射归一化方法综述. 测绘与空间地理信息, 35(6): 8-12 [DOI: 10.3969/j.issn.1672-5867.2012.06.003http://dx.doi.org/10.3969/j.issn.1672-5867.2012.06.003 ]
Zhang J Q, She Q and Pan L . 2008. Change detection of residential area by remote sensing image based on LBP/C texture. Geomatics and Information Science of Wuhan University, 33(1): 7-11
张剑清, 佘琼, 潘励 . 2008. 基于LBP/C纹理的遥感影像居民地变化检测. 武汉大学学报(信息科学版), 33(1): 7-11 [DOI: 10.13203/j.whugis2008.01.001http://dx.doi.org/10.13203/j.whugis2008.01.001 ]
Zhang Y S, Lin G F, Liu Y F, Han C F and Wang W J . 2009. TIC-based radiometric normalization of multi-temporal satellite imagery. Scientia Geographica Sinica, 29(3): 427-432
张友水, 林广发, 刘玉锋, 韩春峰, 王伟杰 . 2009. 基于TIC的多时相遥感影像相对辐射归化处理. 地理科学, 29(3): 427-432 [DOI: 10.13249/j.cnki.sgs.2009.03.004http://dx.doi.org/10.13249/j.cnki.sgs.2009.03.004 ]
Zhao M and Zhao Y D . 2018. Object-oriented and multi-feature hierarchical change detection based on CVA for high-resolution remote sensing imagery. Journal of Remote Sensing, 22(1): 119-131
赵敏, 赵银娣 . 2018. 面向对象的多特征分级CVA遥感影像变化检测. 遥感学报, 22(1): 119-131 [DOI: 10.11834/jrs.20186293http://dx.doi.org/10.11834/jrs.20186293 ]
Zhao Z M, Meng Y, Yue A Z, Huang Q Q, Kong Y L, Yuan Y, Liu X Y, Lin L and Zhang M M . 2016. Review of remotely sensed time series data for change detection. Journal of Remote Sensing, 20(5): 1110-1125
赵忠明, 孟瑜, 岳安志, 黄青青, 孔赟珑, 袁媛, 刘晓奕, 林蕾, 张蒙蒙 . 2016. 遥感时间序列影像变化检测研究进展. 遥感学报, 20(5): 1110-1125 [DOI: 10.11834/jrs.20166170http://dx.doi.org/10.11834/jrs.20166170 ]
Zeng Z F . 2013. Change Detection Research for Remote Sensing Image Land Use based on the Change Vector Analysis Method. Chongqing: Chongqing Jiaotong University: 10-12
曾子芳 . 2013. 基于变化矢量分析法的遥感影像土地利用变化检测研究. 重庆: 重庆交通大学: 10-12
相关文章
相关作者
相关机构