基于时相变化的晴空条件下Himawari-8 AHI火点检测
Himawari-8 AHI fire detection in clear sky based on time-phase change
- 2020年24卷第5期 页码:571-577
纸质出版日期: 2020-05-07
DOI: 10.11834/jrs.20209122
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2020-05-07 ,
扫 描 看 全 文
鄢俊洁,瞿建华,冉茂农,张芳芳.2020.基于时相变化的晴空条件下Himawari-8 AHI火点检测.遥感学报,24(5): 571-577
Yan J J,Qu J H,Ran M N and Zhang F F. 2020. Himawari-8 AHI fire detection in clear sky based on time-phase change. Journal of Remote Sensing(Chinese), 24(5): 571-577[DOI:10.11834/jrs.20209122]
Himawari-8静止气象卫星具有高空间分辨率、高观测频次和高时效特点,对于火点检测具有很强优势。对Himawari-8卫星的3.9 μm和11.2 μm两通道亮温进行了连续时相变化研究,得出两通道的亮温在时间上的变化差值稳定且规律明显。根据两通道的亮温时相特征,考虑白天可见光对3.9 μm通道的影响,并结合火点产生时引起的亮温变化特征,提出了适用于晴空条件下改进的火点检测算法。在多处进行了此算法的实验,例如2018-11-27 T 16:40(UTC时)河北张家口市桥东区一化工厂附近发生的严重爆炸起火事件以及2019-02-28澳大利亚西南部发生的火灾事件,均快速有效的检测到了火点。实验表明,改进的火点检测算法能很好的进行火点检测,并能解决晨昏交界、冰雪下垫面、常规火源点、太阳耀光等火点检测的难题。
Himawari-8 is suitable in fire detection because of its high spatial resolution
observation frequency
and time efficiency. This paper proposes an improved fire detection algorithm based on the continuous phase change at the 3.9 and 11.2 μm measurements by Himawari-8 satellite. The brightness temperature change is stable and evident on the basis of the results on brightness temperature change in different latitudes under clear sky conditions in one day. The brightness temperature at the 3.9 μm channel changes faster than that at the 11.2 μm channel under the continuous phase change for 10 min when a fire occurs. The proposed improved fire detection algorithm for clear sky conditions considers the visible spectral effect at the 3.9 μm channel during day time. Experiments on this algorithm are conducted in several places
such as the serious explosive fire near a chemical plant in Qiaodong District
Zhangjiakou City
Hebei Province
at 16:40 (UTC) on November 27
2018 and a fire incident in southwestern Australia on February 28
2019
and the proposed algorithm quickly and effectively detects the occurrence of fire. Results shows that the proposed algorithm can perform fire detection well during winter
night time
and daytime.
遥感Himawari-8AHI火点判识算法高观测频次时相变化亮温
remote sensingHimawari-8AHIfire detectionhigh-frequency observationphase changebrightness temperature
Bessho K, Date K, Hayashi M, Ikeda A, Imai T, Inoue H, Kumagai Y, Miyakawa T, Murata H, Ohno T, Okuyama A, Oyama R, Sasaki Y, Shimazu Y, Shimoji K, Sumida Y, Suzuki M, Taniguchi H, Tsuchiyama H, Uesawa D, Yokota H and Yoshida R . 2016. An introduction to Himawari-8/9-Japan's new-generation geostationary meteorological satellites. Journal of the Meteorological Society of Japan, 94(2): 151-183 [DOI: 10.2151/jmsj.2016-009http://dx.doi.org/10.2151/jmsj.2016-009 ]
Boles S H and Verbyla D L . 2000. Comparison of three AVHRR-based fire detection algorithms for interior Alaska. Remote Sensing of Environment, 72(1): 1-16 [DOI: 10.1016/s0034-4257(99)00079-6http://dx.doi.org/10.1016/s0034-4257(99)00079-6 ]
Chen J, Zheng W and Liu C . 2017. Application of grassland fire monitoring based on Himawari-8 geostationary meteorological satellite data. Journal of Natural Disasters, 26(4): 197-204
陈洁, 郑伟, 刘诚 . 2017. Himawari-8静止气象卫星草原火监测分析. 自然灾害学报, 26(4): 197-204 [DOI: 10.13577/j.jnd.2017.0423http://dx.doi.org/10.13577/j.jnd.2017.0423 ]
Dozier J . 1981. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment, 11: 221-229 [DOI: 10.1016/0034-4257(81)90021-3http://dx.doi.org/10.1016/0034-4257(81)90021-3 ]
Du P, Liu M X, Xu T T and Song Y . 2018. Application of Himawari-8 data in monitoring forest fire. Acta Scientiarum Naturalium Universitatis Pekinensis, 54(6): 1251-1258
杜品, 刘明旭, 徐婷婷, 宋宇 . 2018. 利用Himawari-8数据监测森林火情初探. 北京大学学报(自然科学版), 54(6): 1251-1258 [DOI: 10.13209/j.0479-8023.2018.082http://dx.doi.org/10.13209/j.0479-8023.2018.082 ]
Flannigan M D and Vonder Haar T H . 1986. Forest fire monitoring using NOAA satellite AVHRR. Canadian Journal of Forest Research, 16(5): 975-982 [DOI: 10.1139/x86-171http://dx.doi.org/10.1139/x86-171 ]
Griffith P C . 2016. Advanced Himawari Imager (AHI) design and operational flexibility//12th Annual Symposium on New Generation Operational Environmental Satellite Systems. [s.l.]:AMS
He Q J andLiu C . 2008. Improved Algorithm of Self-adaptive Fire Detection for MODIS Data,12(3): 448-453
何全军, 刘诚 . 2008. MODIS数据自适应火点检测的改进算法. 遥感学报, 12(3):448-453
Kaufman Y J, Tucker C J and Fung I Y . 1989. Remote sensing of biomass burning in the tropics. Advances in Space Research, 9(7): 265-268 [DOI: 10.1016/0273-1177(89)90173-7http://dx.doi.org/10.1016/0273-1177(89)90173-7 ]
Schroeder W, Oliva P, Giglio L and Csiszar I A . 2014. The New VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sensing of Environment, 143: 85-96 [DOI: 10.1016/j.rse.2013.12.008http://dx.doi.org/10.1016/j.rse.2013.12.008 ]
Wickramasinghe C H, Jones S, Reinke K and Wallace L . 2016. Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sensing, 8(11): 932 [DOI: 10.3390/rs8110932http://dx.doi.org/10.3390/rs8110932 ]
Xiao W P . 2015. Japanese first next-generation weather satellite Himawari-8 enters geostationary orbit. Space International, (2): 87-91
肖武平. 2015. 日本首颗新一代气象卫星向日葵-8入轨. 国际太空, (2): 87-91
Zheng W, Wang M, Chen J and Liu C . 2016. Application of Himawair-8 satellite data in environmental monitoring: a case study of cyanobacteria blooms and straw incineration monitoring//2016 Annual Meeting of the Chinese Society of Environmental Sciences. Haikou: CSES
郑伟, 王萌, 陈洁, 刘诚. 2016. Himawari-8卫星资料在环境监测中的应用——以蓝藻水华和秸秆焚烧监测为例//2016中国环境科学学会学术年会. 海口: 中国环境科学学会
相关作者
相关机构