高分五号大气痕量气体差分吸收光谱仪对流层NO2柱浓度遥感反演研究
Tropospheric NO2 column density retrieval from the GF-5 EMI data
- 2021年25卷第11期 页码:2313-2325
收稿:2020-07-28,
纸质出版:2021-11-07
DOI: 10.11834/jrs.20210303
移动端阅览
收稿:2020-07-28,
纸质出版:2021-11-07
移动端阅览
搭载于“高分五号”(GF-5)卫星上的痕量气体差分吸收光谱仪(EMI)是一台星下观测的高光谱载荷,测量紫外和可见光光谱范围的地球后向散射辐射,设计用于大气痕量气体的探测。本研究基于EMI在VIS1通道的实测光谱,利用差分光学吸收光谱(DOAS)方法进行了对流层NO
2
柱浓度反演,展示了基于EMI载荷的对流层NO
2
柱浓度反演结果,与同类载荷产品进行交叉验证,并利用地基观测结果进行了地基验证。研究表明,EMI反演结果与OMI、TROPOMI具有较好的空间分布一致性和较低的相对偏差,与TROPOMI具有较好的时间变化一致性。地面验证结果表明EMI NO
2
反演结果具有较高的精度。本研究证明了EMI在全球NO
2
监测方面的能力,可以为中国后续污染气体探测载荷的设计和反演算法的开发提供参考。
Significant impact of NO
2
on global atmospheric environment and human health necessitate accurate monitoring of NO
2
. On the one hand
people can study and analyze their generation and extinction laws
distribution characteristics
diffusion
and transmission characteristics. On the other hand
it can provide decision-making basis for the formulation of pollutant discharge policy and pollution control program. However
the number of ground-based air quality monitoring stations has been increasing
providing abundant NO
2
ground observation data. Large-scale monitoring of NO
2
emissions requires the development of other monitoring methods. Satellite instruments covering the ultraviolet and visible spectrum have been widely used to detect the concentration of NO
2
column in the atmosphere with the advantage of wide-range observation. to further strengthen the domestic air quality monitoring
and improve the air quality in China
the Environmental Trace Gas Monitoring Instrument (EMI) onboard the Chinese GaoFen-5 (GF-5) satellite was launched on May 9
2018. It is a nadir-viewing wide-field hyperspectral spectrometer
which measures the earth’s backscattered radiation in the ultraviolet and visible spectrum and is designed for atmospheric trace gas detection. Based on the measured spectrum of EMI VIS1 channel
the tropospheric NO
2
Vertical Column Density (VCD) was retrieved by Differential Optical Absorption Spectrometry (DOAS) method
which consists of three key steps
namely
spectral fitting
Stratosphere-Troposphere Separation (STS)
and tropospheric Air Mass Factor (AMF) calculations. After spectral fitting
a stripe correction scheme was developed for the stripe phenomenon that appears in the initial fitted NO
2
SCD. The current advanced STREAM algorithm was used to estimate the stratospheric NO
2
concentration
and the TM5 NO
2
profile with higher spatial resolution was used in the calculation of tropospheric AMF. The retrieval results of tropospheric NO
2
VCD based on EMI were presented
and the results were cross-verified with NO
2
products from international similar instruments
i.e.
OMI and TROPOMI. From a larger spatial scale
EMI can reflect the global distribution of typical NO
2
pollution city sources. In terms of regional scale
the daily spatial distribution correlation coefficients between EMI and TROPOMI in different regions are greater than 0.9. On a monthly time scale
EMI and OMI (TROPOMI) show consistent spatial distribution in the four urban agglomerations of China
and the average spatial correlation coefficient is 0.8 (0.87). The regional mean bias between EMI and OMI (TROPOMI) is within 11.3% (9.5%). The time series analysis of the Pearl River Delta region shows that EMI has high consistency (
r
=0.89) with TROPOMI. The ground-based MAX-DOAS observation results are also used for validation. The ground validation results show that the EMI retrieval results have high correlation coefficient (0.96) and approximately 35% underestimated. This study proves EMI’s ability in global NO
2
monitoring. In the future
domestic instruments similar to EMI are carried out on the GF-5 (02) satellite and the atmospheric environmental monitoring satellite (AEMS)
which contributes continuously to China’s trace gas detection. Therefore
this study can provide reference for the design of next similar instruments and the development of corresponding NO
2
retrieval algorithm in China.
Barkley M P , Abad G G , Kurosu T P , Spurr R , Torbatian S and Lerot C . 2017 . OMI air-quality monitoring over the Middle East . Atmospheric Chemistry and Physics , 17 ( 7 ): 4687 - 4709 [ DOI: 10.5194/acp-17-4687-2017 http://dx.doi.org/10.5194/acp-17-4687-2017 ]
Beirle S , Hörmann C , Jöckel P , Liu S , Penning de Vries M , Pozzer A , Sihler H , Valks P and Wagner T . 2016 . The STRatospheric Estimation Algorithm from Mainz (STREAM): estimating stratospheric NO 2 from nadir-viewing satellites by weighted convolution . Atmospheric Measurement Techniques , 9 ( 7 ): 2753 - 2779 [ DOI: 10.5194/amt-9-2753-2016 http://dx.doi.org/10.5194/amt-9-2753-2016 ]
Boersma K F , Eskes H J , and Brinksma E J . 2004 . Error analysis for tropospheric NO 2 retrieval from space. Journal of Geophysical Research-Atmospheres, 109 (D 4 ) [DOI: 10.1029/2003JD003962]
Boersma K F , Eskes H J , Dirksen R J , van der A R J , Veefkind J P , Stammes P , Huijnen V , Kleipool Q L , Sneep M , Claas J , Leitão J , Richter A , Zhou Y and Brunner D . 2011 . An improved tropospheric NO 2 column retrieval algorithm for the Ozone Monitoring Instrument . Atmospheric Measurement Techniques , 4 ( 9 ): 1905 - 1928 [ DOI: 10.5194/amt-4-1905-2011 http://dx.doi.org/10.5194/amt-4-1905-2011 ]
Boersma K F , Eskes H J , Richter A , de Smedt I , Lorente A , Beirle S , van Geffen J H G M , Zara M , Peters E , van Roozendael M , Wagner T , Maasakkers J D , van der A R J , Nightingale J , de Rudder A , Irie H , Pinardi G , Lambert J C and Compernolle S C . 2018 . Improving algorithms and uncertainty estimates for satellite NO 2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project . Atmospheric Measurement Techniques , 11 ( 12 ): 6651 - 6678 [ DOI: 10.5194/amt-11-6651-2018 http://dx.doi.org/10.5194/amt-11-6651-2018 ]
Boersma K F , Eskes H J , Veefkind J P , Brinksma E J , van der A R J , Sneep M , van den Oord G H J , Levelt P F , Stammes P , Gleason J F and Bucsela E J . 2007 . Near-real time retrieval of tropospheric NO 2 from OMI . Atmospheric Chemistry and Physics , 7 ( 8 ): 2103 - 2118 [ DOI: 10.5194/acp-7-2103-2007 http://dx.doi.org/10.5194/acp-7-2103-2007 ]
Bovensmann H , Burrows J P , Buchwitz M , Frerick J , Noël S , Rozanov V V , Chance K V and Goede A P H . 1999 . SCIAMACHY: mission objectives and measurement modes . Journal of the Atmospheric Sciences , 56 ( 2 ): 127 - 150 [ DOI: 10.1175/1520-0469(1999)056<0127:smoamm>2.0.co;2 http://dx.doi.org/10.1175/1520-0469(1999)056<0127:smoamm>2.0.co;2 ]
Bucsela E J , Krotkov N A , Celarier E A , Lamsal L N , Swartz W H , Bhartia P K , Boersma K F , Veefkind J P , Gleason J F and Pickering K E . 2013 . A new stratospheric and tropospheric NO 2 retrieval algorithm for nadir-viewing satellite instruments: applications to OMI . Atmospheric Measurement Techniques , 6 ( 10 ): 2607 - 2626 [ DOI: 10.5194/amt-6-2607-2013 http://dx.doi.org/10.5194/amt-6-2607-2013 ]
Burrows J P , Weber M , Buchwitz M , Rozanov V , Ladstätter-Weißenmayer A , Richter A , DeBeek R , Hoogen R , Bramstedt K , Eichmann K U , Eisinger M and Perner D . 1999 . The global ozone monitoring experiment (GOME): mission concept and first scientific results . Journal of the Atmospheric Sciences , 56 ( 2 ): 151 - 175 [ DOI: 10.1175/1520-0469(1999)056<0151:tgomeg>2.0.co;2 http://dx.doi.org/10.1175/1520-0469(1999)056<0151:tgomeg>2.0.co;2 ]
Callies J , Corpaccioli E , Eisinger M , Hahne A and Lefebvre A . 2000 . GOME-2 - Metop's second-generation sensor for operational ozone monitoring . Esa Bulletin , 102 : 28 - 36
Chen D M , Feng Y and Zhang X Y . 2017 . Comparison of variability and change rate in tropospheric NO 2 column obtained from satellite products across China during 1997-2015 . International Journal of Digital Earth , 10 ( 8 ): 814 - 828 [ DOI: 10.1080/17538947.2016.1252435 http://dx.doi.org/10.1080/17538947.2016.1252435 ]
Cheng L X , Tao J H , Valks P , Yu C , Liu S , Wang Y P , Xiong X Z , Wang Z F and Chen L F . 2019 . NO 2 retrieval from the environmental trace gases monitoring instrument (EMI): preliminary results and intercomparison with OMI and TROPOMI . Remote Sensing , 11 ( 24 ): 3017 [ DOI: 10.3390/rs11243017 http://dx.doi.org/10.3390/rs11243017 ]
Drosoglou T , Bais A F , Zyrichidou I , Kouremeti N , Poupkou A , Liora N , Giannaros C , Koukouli M E , Balis D and Melas D . 2017 . Comparisons of ground-based tropospheric NO 2 MAX-DOAS measurements to satellite observations with the aid of an air quality model over the Thessaloniki area, Greece . Atmospheric Chemistry and Physics , 17 ( 9 ): 5829 - 5849 [ DOI: 10.5194/acp-17-5829-2017 http://dx.doi.org/10.5194/acp-17-5829-2017 ]
Drosoglou T , Koukouli M E , Kouremeti N , Bais A F , Zyrichidou I , Balis D , van der A R J , Xu J and Li A . 2018 . MAX-DOAS NO 2 observations over Guangzhou, China; ground-based and satellite comparisons . Atmospheric Measurement Techniques , 11 ( 4 ): 2239 - 2255 [ DOI: 10.5194/amt-11-2239-2018 http://dx.doi.org/10.5194/amt-11-2239-2018 ]
Georgoulias A K , van der A R J , Stammes P , Boersma K F and Eskes H J . 2019 . Trends and trend reversal detection in 2 decades of tropospheric NO 2 satellite observations . Atmospheric Chemistry and Physics , 19 ( 9 ): 6269 - 6294 [ DOI: 10.5194/acp-19-6269-2019 http://dx.doi.org/10.5194/acp-19-6269-2019 ]
Ghude S D , van der A R J , Beig G , Fadnavis S and Polade S D . 2009 . Satellite derived trends in NO 2 over the major global hotspot regions during the past decade and their inter-comparison . Environmental Pollution , 157 ( 6 ): 1873 - 1878 [ DOI: 10.1016/j.envpol.2009.01.013 http://dx.doi.org/10.1016/j.envpol.2009.01.013 ]
Kleipool Q L , Dobber M R , de Haan J F and Levelt P F . 2008 . Earth surface reflectance climatology from 3 years of OMI data . Journal of Geophysical Research , 113 ( D18 ): D 18308 [ DOI: 10.1029/2008jd010290 http://dx.doi.org/10.1029/2008jd010290 ]
Lamsal L N , Krotkov N A , Vasilkov A , Marchenko S , Qin W H , Yang E S , Fasnacht Z , Joiner J , Choi S , Haffner D , Swartz W H , Fisher B and Bucsela E . 2020 . OMI/aura nitrogen dioxide standard product with improved surface and cloud treatments . Atmospheric Measurement Techniques Discussions [ DOI: 10.5194/amt-2020-200 http://dx.doi.org/10.5194/amt-2020-200 ]
Lelieveld J , Beirle S , Hörmann C , Stenchikov G and Wagner T . 2015 . Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East . Science Advances , 1 ( 7 ): e 1500498 [ DOI: 10.1126/sciadv.1500498 http://dx.doi.org/10.1126/sciadv.1500498 ]
Levelt P F , van den Oord G H J , Dobber M R , Malkki A , Visser H , de Vries J , Stammes P , Lundell J O V and Saari H . 2006 . The ozone monitoring instrument . IEEE Transactions on Geoscience and Remote Sensing , 44 ( 5 ): 1093 - 1101 [ DOI: 10.1109/TGRS.2006.872333 http://dx.doi.org/10.1109/TGRS.2006.872333 ]
Lin J T , Martin R V , Boersma K F , Sneep M , Stammes P , Spurr R , Wang P , van Roozendael M , Clémer K and Irie H . 2014 . Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide . Atmospheric Chemistry and Physics , 14 ( 3 ): 1441 - 1461 [ DOI: 10.5194/acp-14-1441-2014 http://dx.doi.org/10.5194/acp-14-1441-2014 ]
Liu M Y , Lin J T , Boersma K F , Pinardi G , Wang Y , Chimot J , Wagner T , Xie P H , Eskes H , van Roozendael M , Hendrick F , Wang P C , Wang T , Yan Y Y , Chen L L and Ni R J . 2019a . Improved aerosol correction for OMI tropospheric NO 2 retrieval over East Asia: constraint from CALIOP aerosol vertical profile . Atmospheric Measurement Techniques , 12 ( 1 ): 1 - 21 [ DOI: 10.5194/amt-12-1-2019 http://dx.doi.org/10.5194/amt-12-1-2019 ]
Liu S , Valks P , Pinardi G , de Smedt I , Yu H , Beirle S and Richter A . 2019b . An improved total and tropospheric NO 2 column retrieval for GOME-2 . Atmospheric Measurement Techniques , 12 ( 2 ): 1029 - 1057 [ DOI: 10.5194/amt-12-1029-2019 http://dx.doi.org/10.5194/amt-12-1029-2019 ]
Lorente A , Boersma K F , Yu H , Dörner S , Hilboll A , Richter A , Liu M Y , Lamsal L N , Barkley M , de Smedt I , van Roozendael M , Wang Y , Wagner T , Beirle S , Lin J T , Krotkov N , Stammes P , Wang P , Eskes H J and Krol M . 2017 . Structural uncertainty in air mass factor calculation for NO 2 and HCHO satellite retrievals . Atmospheric Measurement Techniques , 10 ( 3 ): 759 - 782 [ DOI: 10.5194/amt-10-759-2017 http://dx.doi.org/10.5194/amt-10-759-2017 ]
Ma Q K , Cheng C L , Li M , Chen D H , Zhou Y , Wu M X and Zhou Z . 2019 . The aerosol optical characteristics and chemical composition of single particles in Heshan . China Environmental Science , 39 ( 7 ): 2710 - 2720
马乾坤 , 成春雷 , 李梅 , 陈多宏 , 周洋 , 吴梦曦 , 周振 . 2019 . 鹤山气溶胶光学性质和单颗粒化学组分的研究 . 中国环境科学 , 39 ( 7 ): 2710- 2720 [ DOI: 10.3969/j.issn.1000-6923.2019.07.003 http://dx.doi.org/10.3969/j.issn.1000-6923.2019.07.003 ]
Munro R , Lang R , Klaes D , Poli G , Retscher C , Lindstrot R , Huckle R , Lacan A , Grzegorski M , Holdak A , Kokhanovsky A , Livschitz J and Eisinger M . 2016 . The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing - an overview . Atmospheric Measurement Techniques , 9 ( 3 ): 1279 - 1301 [ DOI: 10.5194/amt-9-1279-2016 http://dx.doi.org/10.5194/amt-9-1279-2016 ]
Rozanov V V , Dinter T , Rozanov A V , Wolanin A , Bracher A and Burrows J P . 2017 . Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: software package SCIATRAN . Journal of Quantitative Spectroscopy and Radiative Transfer , 194 : 65 - 85 [ DOI: 10.1016/j.jqsrt.2017.03.009 http://dx.doi.org/10.1016/j.jqsrt.2017.03.009 ]
Seinfeld J H and Pandis S N . 2016 . Atmospheric Chemistry and Physics: From Air Pollution to Climate Change . 3rd ed . Hoboken : Wiley
Sillman S , Logan J A and Wofsy S C . 1990 . The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes . Journal of Geophysical Research , 95 ( D2 ): 1837 - 1851 [ DOI: 10.1029/JD095iD02p01837 http://dx.doi.org/10.1029/JD095iD02p01837 ]
Solomon S . 1999 . Stratospheric ozone depletion: a review of concepts and history . Reviews of Geophysics 37 ( 3 ): 275 - 316 [ DOI: 10.1029/1999RG900008 http://dx.doi.org/10.1029/1999RG900008 ]
Valks P , Pinardi G , Richter A , Lambert J C , Hao N , Loyola D , van Roozendael M and Emmadi S . 2011 . Operational total and tropospheric NO 2 column retrieval for GOME-2 . Atmospheric Measurement Techniques , 4 ( 7 ): 1491 - 1514 [ DOI: 10.5194/amt-4-1491-2011 http://dx.doi.org/10.5194/amt-4-1491-2011 ]
van der A R J , Peters D H M U , Eskes H , Boersma K F , van Roozendael M , de Smedt I and Kelder H M . 2006 . Detection of the trend and seasonal variation in tropospheric NO 2 over China . Journal of Geophysical Research , 111 ( D12 ): D 12317 [ DOI: 10.1029/2005JD006594 http://dx.doi.org/10.1029/2005JD006594 ]
van Geffen J H G M , Boersma K F , van Roozendael M , Hendrick F , Mahieu E , de Smedt I , Sneep M and Veefkind J P . 2015 . Improved spectral fitting of nitrogen dioxide from OMI in the 405-465 nm window . Atmospheric Measurement Techniques , 8 ( 4 ): 1685 - 1699 [ DOI: 10.5194/amt-8-1685-2015 http://dx.doi.org/10.5194/amt-8-1685-2015 ]
Veefkind J P , Aben I , McMullan K , Förster H , de Vries J , Otter G , Claas J , Eskes H J , de Haan J F , Kleipool Q , van Weele M , Hasekamp O , Hoogeveen R , Landgraf J , Snel R , Tol P , Ingmann P , Voors R , Kruizinga B , Vink R , Visser H and Levelt P F . 2012 . TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications . Remote Sensing of Environment , 120 : 70 - 83 [ DOI: 10.1016/j.rse.2011.09.027 http://dx.doi.org/10.1016/j.rse.2011.09.027 ]
Wang Y , Beirle S , Lampel J , Koukouli M , de Smedt I , Theys N , Li A , Wu D X , Xie P H , Liu C , van Roozendael M , Stavrakou T , Müller J F and Wagner T . 2017 . Validation of OMI, GOME-2A and GOME-2B tropospheric NO 2 , SO 2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China: investigation of the effects of priori profiles and aerosols on the satellite products . Atmospheric Chemistry and Physics , 17 ( 8 ): 5007 - 5033 [ DOI: 10.5194/acp-17-5007-201 http://dx.doi.org/10.5194/acp-17-5007-201 ]
Williams J E , Boersma K F , Le Sager P and Verstraeten W W . 2017 . The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation . Geoscientific Model Development , 10 ( 2 ): 721 - 750 [ DOI: 10.5194/gmd-10-721-2017 http://dx.doi.org/10.5194/gmd-10-721-2017 ]
Xiao Z Y , Jiang H , Song X D and Zhang X Y . 2013 . Monitoring of atmospheric nitrogen dioxide using Ozone Monitoring Instrument remote sensing data . Journal of Applied Remote Sensing , 7 ( 1 ): 073534 [ DOI: 10.1117/1.JRS.7.073534 http://dx.doi.org/10.1117/1.JRS.7.073534 ]
Zhang C X , Liu C , Wang Y , Si F Q , Zhou H J , Zhao M J , Su W J , Zhang W Q , Chan K L , Liu X , Xie P H , Liu J G and Wagner T . 2018a . Preflight evaluation of the performance of the Chinese environmental trace gas monitoring instrument (EMI) by spectral analyses of nitrogen dioxide . IEEE Transactions on Geoscience and Remote Sensing , 56 ( 6 ): 3323 - 3332 [ DOI: 10.1109/TGRS.2018.2798038 http://dx.doi.org/10.1109/TGRS.2018.2798038 ]
Zhang J , van der A R J and Ding J Y . 2018b . Detection and emission estimates of NO x sources over China North Plain using OMI observations . International Journal of Remote Sensing , 39 ( 9 ): 2847 - 2859 [ DOI: 10.1080/01431161.2018.1430402 http://dx.doi.org/10.1080/01431161.2018.1430402 ]
Zhang L S , Lee C S , Zhang R Q and Chen L F . 2017 . Spatial and temporal evaluation of long term trend (2005-2014) of OMI retrieved NO 2 and SO 2 concentrations in Henan Province, China . Atmospheric Environment , 154 : 151 - 166 [ DOI: 10.1016/j.atmosenv.2016.11.067 http://dx.doi.org/10.1016/j.atmosenv.2016.11.067 ]
Zhang W T , Zhang X Y , Liu L , Zhao L M and Lu X H . 2018 . Spatial variations in NO 2 trend in North China Plain based on multi-source satellite remote sensing . Journal of Remote Sensing , 22 ( 2 ): 335 - 346
章吴婷 , 张秀英 , 刘磊 , 赵丽敏 , 卢学鹤 . 2018 . 多源卫星遥感的华北平原大气NO 2 浓度时空变化 . 遥感学报 , 22 ( 2 ): 335- 346 [ DOI: 10.11834/jrs.20187305 http://dx.doi.org/10.11834/jrs.20187305 ]
Zhang X Y , Wang F , Wang W H , Huang F X , Chen B L , Gao L , Wang S P , Yan H H , Ye H H , Si F Q , Hong J , Li X Y , Cao Q , Che H Z and Li Z Q . 2020 . The development and application of satellite remote sensing for atmospheric compositions in China . Atmospheric Research , 245 : 105056 [ DOI: 10.1016/j.atmosres.2020.105056 http://dx.doi.org/10.1016/j.atmosres.2020.105056 ]
Zhao M J , Si F Q , Zhou H J , Wang S M and Jiang Y . 2019 . Level 0 ~ 1 processor of spaceborne environmental trace gases monitoring instrument. Journal of Atmospheric and Environmental Optics , 14 ( 1 ): 66 - 73
赵敏杰 , 司福祺 , 周海金 , 汪世美 , 江宇 . 2019 . 星载大气痕量气体差分吸收光谱仪0~1级数据处理研究 . 大气与环境光学学报 , 14 ( 1 ): 66- 73 [ DOI: 10.3969/j.issn.1673-6141.2019.01.007 http://dx.doi.org/10.3969/j.issn.1673-6141.2019.01.007 ]
Zhao M J , Si F Q , Zhou H J , Wang S M , Jiang Y and Liu W Q . 2018 . Preflight calibration of the Chinese Environmental Trace Gases Monitoring Instrument (EMI) . Atmospheric Measurement Techniques , 11 ( 9 ): 5403 - 5419 [ DOI: 10.5194/amt-11-5403-2018 http://dx.doi.org/10.5194/amt-11-5403-2018 ]
相关作者
相关机构
京公网安备11010802024621
