高光谱遥感影像降维:进展、挑战与展望
Dimensionality reduction for hyperspectral remote sensing: Advances, challenges, and prospects
- 2022年26卷第8期 页码:1504-1529
收稿:2020-09-18,
纸质出版:2022-08-07
DOI: 10.11834/jrs.20210354
移动端阅览
收稿:2020-09-18,
纸质出版:2022-08-07
移动端阅览
高光谱遥感影像数据具有高维特征、信息冗余、不确定性显著、小样本、空谱合一等特征,对其进行数据处理面临巨大挑战,高光谱遥感影像降维是高光谱遥感的重要研究方向之一。本文对当前高光谱遥感影像降维的相关研究进展进行了综述,在介绍高光谱遥感数据特点的基础上,重点从特征提取和特征选择两方面对高光谱遥感影像降维的最新研究和前沿进展进行了系统性综述;并从特征可分性、特征质量评价、特征数目确定、多特征优化以及需求驱动的特征选择等方面分析了高光谱遥感影像降维面临的挑战。随着智能化高光谱遥感的发展,高光谱遥感影像智能降维成为未来的发展方向,同时其发展将兼顾多特征质量评估与优选、搜索策略优化、满足应用需求等多目标的需求。随着高光谱遥感数据获取能力的提升和深入应用,高光谱遥感影像降维将会发挥重要而不可替代的作用。
Hyperspectral imaging can provide narrow bands and continuous spectrum information. However
hyperspectral image data have the characteristics of high dimensionality
rich features
information redundancy
small samples
and significant uncertainty
which result in difficulties in hyperspectral image data processing. Dimensionality reduction of hyperspectral remote sensing is one of the important topics in hyperspectral image data processing. Hyperspectral image data have hundreds of bands and can provide rich information
but a strong correlation exists between different bands
resulting in data redundancy. Therefore
the dimensionality problem is encountered during the processing of hyperspectral data
such as the increase in time complexity and the overfitting of the prediction model due to the increase in spectral feature dimension. More importantly
the number of training samples available for hyperspectral remote sensing images is small
and the feature dimension is much larger than the training sample. The classification accuracy will increase first and then decrease with the increase of feature dimensionality
that is
the “Hughes” phenomenon. Therefore
exploiting the rich information of hyperspectral images data and solving the problem of high feature dimension through certain methods have become key issues in the research on hyperspectral imaging data processing. The dimensionality reduction of hyperspectral remote sensing image is an approach to reduce the dimensionality of hyperspectral imaging through feature extraction or band selection while retaining as much effective information or features as possible. Feature extraction methods
such as principal component analysis
linear discriminant analysis
independent component analysis
manifold learning
and deep learning-based methods
use the projection transformation method to map hyperspectral data from high-dimensional space to low-dimensional space. Feature selection eliminates redundant bands without changing the original feature structure and finds representative feature band subsets
such as the selection based on information measurement and feature correlation. With the development of new technologies
evolutionary and intelligent algorithms
such as the genetic
ant colony
and firefly algorithms
have been applied in hyperspectral remote sensing dimensionality reduction.
This article systematically summarizes and reviews the current advances in dimensionality reduction for hyperspectral remote sensing
especially for feature extraction and selection. For feature extraction
we review the advances of feature extraction algorithms based on index and parameters
projection and transformation
band combination
spatial algorithm
manifold learning
and deep learning. For band selection
the advances in information measurement
search strategy
optimized band number
multi-feature quality assessment
and optimization algorithms are reviewed. The challenges of dimensionality reduction for hyperspectral remote sensing are analyzed from five aspects: feature separability
feature quality evaluation
feature number determination
multi-feature optimization
and problem-oriented feature selection. Intelligent dimensionality reduction will be one of the most popular topics with the development of intelligent hyperspectral remote sensing. Meanwhile
multi-feature quality assessment
search strategy optimization and application requirements will attract special attention in the future. The dimensionality reduction of hyperspectral remote sensing will play an important and irreplaceable role in hyperspectral image data acquisition and applications.
Alsuwaidi A , Grieve B and Yin H J . 2018 . Feature-ensemble-based novelty detection for analyzing plant hyperspectral datasets . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 11 ( 4 ): 1041 - 1055 [ DOI: 10.1109/JSTARS.2017.2788426 http://dx.doi.org/10.1109/JSTARS.2017.2788426 ]
Bajorski P . 2011 . Second moment linear dimensionality as an alternative to virtual dimensionality . IEEE Transactions on Geoscience and Remote Sensing , 49 ( 2 ): 672 - 678 [ DOI: 10.1109/TGRS.2010.2057434 http://dx.doi.org/10.1109/TGRS.2010.2057434 ]
Baudat G and Anouar F . 2000 . Generalized discriminant analysis using a kernel approach . Neural Computation , 12 ( 10 ): 2385 - 2404 [ DOI: 10.1162/089976600300014980 http://dx.doi.org/10.1162/089976600300014980 ]
Bellman R E . 1961 . Adaptive Control Processes: A Guided Tour . Princeton, NJ : Princeton University Press
Benediktsson J A , Sveinsson J R and Amason K . 1995 . Classification and feature extraction of AVIRIS data . IEEE Transactions on Geoscience and Remote Sensing , 33 ( 5 ): 1194 - 1205 [ DOI: 10.1109/36.469483 http://dx.doi.org/10.1109/36.469483 ]
Bioucas-Dias J M , Plaza A , Camps-Valls G , Scheunders P , Nasrabadi N and Chanussot J . 2013 . Hyperspectral remote sensing data analysis and future challenges . IEEE Geoscience and Remote Sensing Magazine , 1 ( 2 ): 6 - 36 [ DOI: 10.1109/MGRS.2013.2244672 http://dx.doi.org/10.1109/MGRS.2013.2244672 ]
Camastra F and Staiano A . 2016 . Intrinsic dimension estimation: advances and open problems . Information Sciences , 328 : 26 - 41 [ DOI: 10.1016/j.ins.2015.08.029 http://dx.doi.org/10.1016/j.ins.2015.08.029 ]
Challa A , Barman G , Danda S and Sagar B S D . 2022 . Band selection using dilation distances . IEEE Geoscience and Remote Sensing Letters , 19 : 5503705 [ DOI: 10.1109/LGRS.2021.3057117 http://dx.doi.org/10.1109/LGRS.2021.3057117 ]
Champion I , Germain C , Da Costa J P , Alborini A and Dubois-Fernandez P . 2014 . Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix . IEEE Geoscience and Remote Sensing Letters , 11 ( 1 ): 5 - 9 [ DOI: 10.1109/LGRS.2013.2244060 http://dx.doi.org/10.1109/LGRS.2013.2244060 ]
Chang C I . 2000 . An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis . IEEE Transactions on Information Theory , 46 ( 5 ): 1927 - 1932 [ DOI: 10.1109/18.857802 http://dx.doi.org/10.1109/18.857802 ]
Chang C I . 2003 . Hyperspectral Imaging: Techniques for Spectral Detection and Classification . New York : Springer [ DOI: 10.1007/978-1-4419-9170-6 http://dx.doi.org/10.1007/978-1-4419-9170-6 ]
Chang C I . 2009 . Virtual dimensionality for hyperspectral imagery . SPIE Newsroom , 52 ( 1 ): 188 - 208 [ DOI: 10.1117/2.1200909.1749 http://dx.doi.org/10.1117/2.1200909.1749 ]
Chang C I . 2013 . Hyperspectral Data Processing: Algorithm Design and Analysis . New Jersey : Wiley-Interscience
Chang C I . 2018 . A review of virtual dimensionality for hyperspectral imagery . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 11 ( 4 ): 1285 - 1305 [ DOI: 10.1109/JSTARS.2017.2782706 http://dx.doi.org/10.1109/JSTARS.2017.2782706 ]
Chang C I and Du Q . 1999 . Interference and noise-adjusted principal components analysis . IEEE Transactions on Geoscience and Remote Sensing , 37 ( 5 ): 2387 - 2396 [ DOI: 10.1109/36.789637 http://dx.doi.org/10.1109/36.789637 ]
Chang C I and Du Q . 2004 . Estimation of number of spectrally distinct signal sources in hyperspectral imagery . IEEE Transactions on Geoscience and Remote Sensing , 42 ( 3 ): 608 - 619 [ DOI: 10.1109/TGRS.2003.819189 http://dx.doi.org/10.1109/TGRS.2003.819189 ]
Chang C I , Kuo Y M , Chen S H , Liang C C , Ma K Y and Hu P F . 2021 . Self-mutual information-based band selection for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 59 ( 7 ): 5979 - 5997 [ DOI: 10.1109/TGRS.2020.3024602 http://dx.doi.org/10.1109/TGRS.2020.3024602 ]
Chang C I , Lee L C , Xue B , Song M P and Chen J . 2017 . Channel capacity approach to hyperspectral band subset selection . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 10 ( 10 ): 4630 - 4644 [ DOI: 10.1109/JSTARS.2017.2724604 http://dx.doi.org/10.1109/JSTARS.2017.2724604 ]
Chang C I and Liu K H . 2014 . Progressive band selection of spectral unmixing for hyperspectral imagery . IEEE Transactions on Geoscience and Remote Sensing , 52 ( 4 ): 2002 - 2017 [ DOI: 10.1109/TGRS.2013.2257604 http://dx.doi.org/10.1109/TGRS.2013.2257604 ]
Chang C I and Wang S . 2006 . Constrained band selection for hyperspectral imagery . IEEE Transactions on Geoscience and Remote Sensing , 44 ( 6 ): 1575 - 1585 [ DOI: 10.1109/TGRS.2006.864389 http://dx.doi.org/10.1109/TGRS.2006.864389 ]
Chen S G and Zhang D Q . 2011 . Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification . IEEE Geoscience and Remote Sensing Letters , 8 ( 2 ): 369 - 373 [ DOI: 10.1109/LGRS.2010.2076407 http://dx.doi.org/10.1109/LGRS.2010.2076407 ]
Chen Y S , Lin Z H , Zhao X , Wang G and Gu Y F . 2014 . Deep learning-based classification of hyperspectral data . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 7 ( 6 ): 2094 - 2107 [ DOI: 10.1109/JSTARS.2014.2329330 http://dx.doi.org/10.1109/JSTARS.2014.2329330 ]
Coban M Z and Mersereau R M . 1998 . A fast exhaustive search algorithm for rate-constrained motion estimation . IEEE Transactions on Image Processing , 7 ( 5 ): 769 - 773 [ DOI: 10.1109/83.668031 http://dx.doi.org/10.1109/83.668031 ]
Conoscenti M , Coppola R and Magli E . 2016 . Constant SNR, rate control, and entropy coding for predictive lossy hyperspectral image compression . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 12 ): 7431 - 7441 [ DOI: 10.1109/TGRS.2016.2603998 http://dx.doi.org/10.1109/TGRS.2016.2603998 ]
Dadon A , Ben-Dor E and Karnieli A . 2010 . Use of derivative calculations and minimum noise fraction transform for detecting and correcting the spectral curvature effect (smile) in Hyperion images . IEEE Transactions on Geoscience and Remote Sensing , 48 ( 6 ): 2603 - 2612 [ DOI: 10.1109/TGRS.2010.2040391 http://dx.doi.org/10.1109/TGRS.2010.2040391 ]
Debba P , Carranza E J M , Van der Meer F D and Stein A . 2006 . Abundance Estimation of spectrally similar minerals by using derivative spectra in simulated annealing . IEEE Transactions on Geoscience and Remote Sensing , 44 ( 12 ): 3649 - 3658 [ DOI: 10.1109/TGRS.2006.881125 http://dx.doi.org/10.1109/TGRS.2006.881125 ]
Dong Y N , Du B , Zhang L P and Zhang L F . 2017 . Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning . IEEE Transactions on Geoscience and Remote Sensing , 55 ( 5 ): 2509 - 2524 [ DOI: 10.1109/TGRS.2016.2645703 http://dx.doi.org/10.1109/TGRS.2016.2645703 ]
Dopido I , Villa A , Plaza A and Gamba P . 2012 . A quantitative and comparative assessment of unmixing-based feature extraction techniques for hyperspectral image classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 5 ( 2 ): 421 - 435 [ DOI: 10.1109/JSTARS.2011.2176721 http://dx.doi.org/10.1109/JSTARS.2011.2176721 ]
Du P J , Tan K and Xia J S . 2012 . Hyperspectral Image Classification and SVM Applications . Beijing : Science Press
杜培军 , 谭琨 , 夏俊士 . 2012 . 高光谱遥感影像分类与支持向量机应用研究 . 北京 : 科学出版社
Du P J , Wang X M , Tan K and Xia J S . 2011 . Dimensionality reduction and feature extraction from hyperspectral remote sensing imagery based on manifold learning . Geomatics and Information Science of Wuhan University , 36 ( 2 ): 148 - 152
杜培军 , 王小美 , 谭琨 , 夏俊士 . 2011 . 利用流形学习进行高光谱遥感影像的降维与特征提取 . 武汉大学学报(信息科学版) , 36 ( 2 ): 148 - 152 [ DOI: 10.13203/j.whugis2011.02.027 http://dx.doi.org/10.13203/j.whugis2011.02.027 ]
Du Q . 2007 . Modified fisher's linear discriminant analysis for hyperspectral imagery . IEEE Geoscience and Remote Sensing Letters , 4 ( 4 ): 503 - 507 [ DOI: 10.1109/LGRS.2007.900751 http://dx.doi.org/10.1109/LGRS.2007.900751 ]
Du Q and Yang H . 2008 . Similarity-based unsupervised band selection for hyperspectral image analysis . IEEE Geoscience and Remote Sensing Letters , 5 ( 4 ): 564 - 568 [ DOI: 10.1109/LGRS.2008.2000619 http://dx.doi.org/10.1109/LGRS.2008.2000619 ]
Du Q , Zhu W , Yang H and Fowler J E . 2009 . Segmented principal component analysis for parallel compression of hyperspectral imagery . IEEE Geoscience and Remote Sensing Letters , 6 ( 4 ): 713 - 717 [ DOI: 10.1109/LGRS.2009.2024175 http://dx.doi.org/10.1109/LGRS.2009.2024175 ]
Falco N , Benediktsson J A and Bruzzone L . 2014 . A study on the effectiveness of different independent component analysis algorithms for hyperspectral image classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 7 ( 6 ): 2183 - 2199 [ DOI: 10.1109/JSTARS.2014.2329792 http://dx.doi.org/10.1109/JSTARS.2014.2329792 ]
Fang H and Liang S . 2008 . Leaf area index models // Encyclopedia of Ecology . Oxford : Academic Press: 2139 - 2148 [ DOI: 10.1016/B978-0-12-409548-9.09076-X http://dx.doi.org/10.1016/B978-0-12-409548-9.09076-X ]
Fang Y , Li H , Ma Y , Liang K , Hu Y J , Zhang S J and Wang H Y . 2014 . Dimensionality reduction of hyperspectral images based on robust spatial information using locally linear embedding . IEEE Geoscience and Remote Sensing Letters , 11 ( 10 ): 1712 - 1716 [ DOI: 10.1109/LGRS.2014.2306689 http://dx.doi.org/10.1109/LGRS.2014.2306689 ]
Fassnacht F E , Neumann C , Förster M , Buddenbaum H , Ghosh A , Clasen A , Joshi P K and Koch B . 2014 . Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three central European test sites . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 7 ( 6 ): 2547 - 2561 [ DOI: 10.1109/JSTARS.2014.2329390 http://dx.doi.org/10.1109/JSTARS.2014.2329390 ]
Fauvel M , Tarabalka Y , Benediktsson J A , Chanussot J and Tilton J C . 2013 . Advances in spectral-spatial classification of hyperspectral images . Proceedings of the IEEE , 101 ( 3 ): 652 - 675 [ DOI: 10.1109/JPROC.2012.2197589 http://dx.doi.org/10.1109/JPROC.2012.2197589 ]
Feng J , Jiao L C , Liu F , Sun T and Zhang X R . 2015 . Mutual-information-based semi-supervised hyperspectral band selection with high discrimination, high information, and low redundancy . IEEE Transactions on Geoscience and Remote Sensing , 53 ( 5 ): 2956 - 2969 [ DOI: 10.1109/TGRS.2014.2367022 http://dx.doi.org/10.1109/TGRS.2014.2367022 ]
Filippi A M and Jensen J R . 2007 . Effect of continuum removal on hyperspectral coastal vegetation classification using a fuzzy learning vector quantizer . IEEE Transactions on Geoscience and Remote Sensing , 45 ( 6 ): 1857 - 1869 [ DOI: 10.1109/TGRS.2007.894929 http://dx.doi.org/10.1109/TGRS.2007.894929 ]
Gan F P , Xiong S Q , Wang R S , Yan B K , Liu S W , Yao G Q , Zhang Z G , Zhou Q , Yang S M and Wang Q H . 2014 . Hyperspectral Mineral Mapping and Applications . Beijing : Science Press
甘甫平 , 熊盛青 , 王润生 , 闫柏棍 , 刘圣伟 , 姚国清 , 张宗贵 , 周强 , 杨苏明 , 王青华 . 2014 . 高光谱矿物填图及示范应用 . 北京 : 科学出版社
Gao B C . 1996 . NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space . Remote Sensing of Environment , 58 ( 3 ): 257 - 266 [ DOI: 10.1016/S0034-4257(96)00067-3 http://dx.doi.org/10.1016/S0034-4257(96)00067-3 ]
Ghamisi P , Benediktsson J A and Sveinsson J R . 2014 . Automatic spectral–spatial classification framework based on attribute profiles and supervised feature extraction . IEEE Transactions on Geoscience and Remote Sensing , 52 ( 9 ): 5771 - 5782 [ DOI: 10.1109/TGRS.2013.2292544 http://dx.doi.org/10.1109/TGRS.2013.2292544 ]
Gong M G , Zhang M Y and Yuan Y . 2016 . Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 1 ): 544 - 557 [ DOI: 10.1109/TGRS.2015.2461653 http://dx.doi.org/10.1109/TGRS.2015.2461653 ]
Gormus E T , Canagarajah N and Achim A . 2012 . Dimensionality reduction of hyperspectral images using empirical mode decompositions and wavelets . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 5 ( 6 ): 1821 - 1830 [ DOI: 10.1109/JSTARS.2012.2203587 http://dx.doi.org/10.1109/JSTARS.2012.2203587 ]
Groves P and Bajcsy P . 2003 . Methodology for hyperspectral band and classification model selection // IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data . Greenbelt, MD : IEEE: 120 - 128 [ DOI: 10.1109/WARSD.2003.1295183 http://dx.doi.org/10.1109/WARSD.2003.1295183 ]
Gu Y F , Liu T Z , Jia X P , Benediktsson J A and Chanussot J . 2016 . Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 6 ): 3235 - 3247 [ DOI: 10.1109/TGRS.2015.2514161 http://dx.doi.org/10.1109/TGRS.2015.2514161 ]
Gu Y F , Liu Y and Zhang Y . 2008 . A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery . IEEE Geoscience and Remote Sensing Letters , 5 ( 1 ): 43 - 47 [ DOI: 10.1109/LGRS.2007.907304 http://dx.doi.org/10.1109/LGRS.2007.907304 ]
Guo B F . 2020 . Enriching absorption features for hyperspectral materials identification . Optics Express , 28 ( 3 ): 4127 - 4144 [ DOI: 10.1364/OE.384580 http://dx.doi.org/10.1364/OE.384580 ]
Haboudane D , Miller J R , Pattey E , Zarco-Tejada P J and Strachan I B . 2004 . Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture . Remote Sensing of Environment , 90 ( 3 ): 337 - 352 [ DOI: 10.1016/j.rse.2003.12.013 http://dx.doi.org/10.1016/j.rse.2003.12.013 ]
Hou B , Huang T M and Jiao L C . 2015 . Spectral-spatial classification of hyperspectral data using 3-D morphological profile . IEEE Geoscience and Remote Sensing Letters , 12 ( 12 ): 2364 - 2368 [ DOI: 10.1109/LGRS.2015.2476498 http://dx.doi.org/10.1109/LGRS.2015.2476498 ]
Hsu P H . 2007 . Feature extraction of hyperspectral images using wavelet and matching pursuit . ISPRS Journal of Photogrammetry and Remote Sensing , 62 ( 2 ): 78 - 92 [ DOI: 10.1016/j.isprsjprs.2006.12.004 http://dx.doi.org/10.1016/j.isprsjprs.2006.12.004 ]
Hu P , Liu X B , Cai Y M and Cai Z H . 2019 . Band Selection of hyperspectral images using multiobjective optimization-based sparse self-representation . IEEE Geoscience and Remote Sensing Letters , 16 ( 3 ): 452 - 456 [ DOI: 10.1109/LGRS.2018.2872540 http://dx.doi.org/10.1109/LGRS.2018.2872540 ]
Huang H , Shi G Y , Duan Y L and Zhang L M . 2019 . Dimensionality reduction method for hyperspectral images based on weighted spatial-spectral combined preserving embedding . Acta Geodaetica et Cartographica Sinica , 48 ( 8 ): 1014 - 1024
黄鸿 , 石光耀 , 段宇乐 , 张丽梅 . 2019 . 加权空-谱联合保持嵌入的高光谱遥感影像降维方法 . 测绘学报 , 48 ( 8 ): 1014 - 1024 [ DOI: 10.11947/j.AGCS.2019.20180229 http://dx.doi.org/10.11947/j.AGCS.2019.20180229 ]
Huete A R . 1988 . A soil-adjusted vegetation index (SAVI) . Remote Sensing of Environment , 25 ( 3 ): 295 - 309 [ DOI: 10.1016/0034-4257(88)90106-X http://dx.doi.org/10.1016/0034-4257(88)90106-X ]
Hughes G . 1968 . On the mean accuracy of statistical pattern recognizers . IEEE Transactions on Information Theory , 14 ( 1 ): 55 - 63 [ DOI: 10.1109/TIT.1968.1054102 http://dx.doi.org/10.1109/TIT.1968.1054102 ]
Ifarraguerri A and Chang C I . 2000 . Unsupervised hyperspectral image analysis with projection pursuit . IEEE Transactions on Geoscience and Remote Sensing , 38 ( 6 ): 2529 - 2538 [ DOI: 10.1109/36.885200 http://dx.doi.org/10.1109/36.885200 ]
Ifarraguerri A and Prairie M W . 2004 . Visual method for spectral band selection . IEEE Geoscience and Remote Sensing Letters , 1 ( 2 ): 101 - 106 [ DOI: 10.1109/LGRS.2003.822879 http://dx.doi.org/10.1109/LGRS.2003.822879 ]
Izquierdo-Verdiguier E , Gómez-Chova L , Bruzzone L and Camps-Valls G . 2014 . Semisupervised kernel feature extraction for remote sensing image analysis . IEEE Transactions on Geoscience and Remote Sensing , 52 ( 9 ): 5567 - 5578 [ DOI: 10.1109/TGRS.2013.2290372 http://dx.doi.org/10.1109/TGRS.2013.2290372 ]
Jia S , Shen L L , Zhu J S and Li Q Q . 2018 . A 3-D gabor phase-based coding and matching framework for hyperspectral imagery classification . IEEE Transactions on Cybernetics , 48 ( 4 ): 1176 - 1188 [ DOI: 10.1109/TCYB.2017.2682846 http://dx.doi.org/10.1109/TCYB.2017.2682846 ]
Jia X P , Kuo B C and Crawford M M . 2013 . Feature mining for hyperspectral image classification . Proceedings of the IEEE , 101 ( 3 ): 676 - 697 [ DOI: 10.1109/JPROC.2012.2229082 http://dx.doi.org/10.1109/JPROC.2012.2229082 ]
Jia X P and Richards J A . 1999 . Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification . IEEE Transactions on Geoscience and Remote Sensing , 37 ( 1 ): 538 - 542 [ DOI: 10.1109/36.739109 http://dx.doi.org/10.1109/36.739109 ]
Kuo B C and Landgrebe D A . 2004 . Nonparametric weighted feature extraction for classification . IEEE Transactions on Geoscience and Remote Sensing , 42 ( 5 ): 1096 - 1105 [ DOI: 10.1109/TGRS.2004.825578 http://dx.doi.org/10.1109/TGRS.2004.825578 ]
Kuo B C , Li C H and Yang J M . 2009 . Kernel nonparametric weighted feature extraction for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 47 ( 4 ): 1139 - 1155 [ DOI: 10.1109/TGRS.2008.2008308 http://dx.doi.org/10.1109/TGRS.2008.2008308 ]
Landgrebe D . 1999 . Information extraction principles and methods for multispectral and hyperspectral image data // Information Processing for Remote Sensing . New Jersey : The world Scientific Publishing: 3 - 37 [ DOI: 10.1142/9789812815705_0001 http://dx.doi.org/10.1142/9789812815705_0001 ]
Lee J A and Verleysen M . 2009 . Quality assessment of dimensionality reduction: rank-based criteria . Neurocomputing , 72 ( 7/9 ): 1431 - 1443 [ DOI: 10.1016/j.neucom.2008.12.017 http://dx.doi.org/10.1016/j.neucom.2008.12.017 ]
Li J , Bioucas-Dias J M and Plaza A . 2012 . Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields . IEEE Transactions on Geoscience and Remote Sensing , 50 ( 3 ): 809 - 823 [ DOI: 10.1109/TGRS.2011.2162649 http://dx.doi.org/10.1109/TGRS.2011.2162649 ]
Li J , Huang X , Gamba P , Bioucas-Dias J M , Zhang L P , Benediktsson J A and Plaza A . 2015a . Multiple feature learning for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 53 ( 3 ): 1592 - 1606 [ DOI: 10.1109/TGRS.2014.2345739 http://dx.doi.org/10.1109/TGRS.2014.2345739 ]
Li W , Chen C , Su H J and Du Q . 2015b . Local binary patterns and extreme learning machine for hyperspectral imagery classification . IEEE Transactions on Geoscience and Remote Sensing , 53 ( 7 ): 3681 - 3693 [ DOI: 10.1109/TGRS.2014.2381602 http://dx.doi.org/10.1109/TGRS.2014.2381602 ]
Li W and Du Q . 2014 . Gabor-filtering-based nearest regularized subspace for hyperspectral image classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 7 ( 4 ): 1012 - 1022 [ DOI: 10.1109/JSTARS.2013.2295313 http://dx.doi.org/10.1109/JSTARS.2013.2295313 ]
Li W , Prasad S , Fowler J E and Bruce L M . 2011 . Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification . IEEE Geoscience and Remote Sensing Letters , 8 ( 5 ): 894 - 898 [ DOI: 10.1109/ LGRS.2011.2128854 http://dx.doi.org/10.1109/LGRS.2011.2128854 ]
Li X , Ding M L and Pižurica A . 2020 . Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 4 ): 2615 - 2629 [ DOI: 10.1109/TGRS.2019.2952758 http://dx.doi.org/10.1109/TGRS.2019.2952758 ]
Liao W Z , Pizurica A , Scheunders P , Philips W and Pi Y G . 2013 . Semisupervised local discriminant analysis for feature extraction in hyperspectral images . IEEE Transactions on Geoscience and Remote Sensing , 51 ( 1 ): 184 - 198 [ DOI: 10.1109/TGRS.2012.2200106 http://dx.doi.org/10.1109/TGRS.2012.2200106 ]
Liu D W , Wang W , Wang X K , Wang C , Pei J Y and Chen W C . 2020a . Poststack seismic data denoising based on 3-D convolutional neural network . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 3 ): 1598 - 1629 [ DOI: 10.1109/TGRS.2019.2947149 http://dx.doi.org/10.1109/TGRS.2019.2947149 ]
Liu H J , Su H J and Zhao B . 2018 . Hyper-spectral multiple features optimization using improved firefly algorithm . Remote Sensing Technology and Application , 33 ( 1 ): 110 - 118
刘慧珺 , 苏红军 , 赵波 . 2018 . 基于改进萤火虫算法的高光谱遥感多特征优化方法 . 遥感技术与应用 , 33 ( 1 ): 110 - 118 [ DOI: 10.11873/j.issn.1004-0323.2018.1.0110 http://dx.doi.org/10.11873/j.issn.1004-0323.2018.1.0110 ]
Liu L , Wang Y B , Peng J H , Zhang L Q , Zhang B and Cao Y . 2020b . Latent relationship guided stacked sparse autoencoder for hyperspectral imagery classification . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 5 ): 3711 - 3725 [ DOI: 10.1109/TGRS.2019.2961564 http://dx.doi.org/10.1109/TGRS.2019.2961564 ]
Lunga D and Ersoy O . 2013 . Spherical stochastic neighbor embedding of hyperspectral data . IEEE Transactions on Geoscience and Remote Sensing , 51 ( 2 ): 857 - 871 [ DOI: 10.1109/TGRS.2012.2205004 http://dx.doi.org/10.1109/TGRS.2012.2205004 ]
Luo F L , Huang H , Ma Z Z and Liu J M . 2016 . Semisupervised sparse manifold discriminative analysis for feature extraction of hyperspectral images . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 10 ): 6197 - 6211 [ DOI: 10.1109/TGRS.2016.2583219 http://dx.doi.org/10.1109/TGRS.2016.2583219 ]
Martínez-Usómartinez-Uso A , Pla F , Sotoca J M and García-Sevilla P . 2007 . Clustering-based hyperspectral band selection using information measures . IEEE Transactions on Geoscience and Remote Sensing , 45 ( 12 ): 4158 - 4171 [ DOI: 10.1109/TGRS.2007.904951 http://dx.doi.org/10.1109/TGRS.2007.904951 ]
Matteoli S , Veracini T , Diani M and Corsini G . 2014 . Background density nonparametric estimation with data-adaptive bandwidths for the detection of anomalies in multi-hyperspectral imagery . IEEE Geoscience and Remote Sensing Letters , 11 ( 1 ): 163 - 167 [ DOI: 10.1109/LGRS.2013.2250907 http://dx.doi.org/10.1109/LGRS.2013.2250907 ]
Mura M D , Villa A , Benediktsson J A , Chanussot J and Bruzzone L . 2011 . Classification of hyperspectral images by using extended morphological attribute profiles and independent component analysis . IEEE Geoscience and Remote Sensing Letters , 8 ( 3 ): 542 - 546 [ DOI: 10.1109/LGRS.2010.2091253 http://dx.doi.org/10.1109/LGRS.2010.2091253 ]
Ni D and Ma H B . 2015 . Hyperspectral image classification via sparse code histogram . IEEE Geoscience and Remote Sensing Letters , 12 ( 9 ): 1843 - 1847 [ DOI: 10.1109/LGRS.2015.2430871 http://dx.doi.org/10.1109/LGRS.2015.2430871 ]
Nie F P , Xiang S M , Song Y Q and Zhang C S . 2009 . Extracting the optimal dimensionality for local tensor discriminant analysis . Pattern Recognition , 42 ( 1 ): 105 - 114 [ DOI: 10.1016/j.patcog.2008.03.012 http://dx.doi.org/10.1016/j.patcog.2008.03.012 ]
Pan B , Shi Z W and Xu X . 2019 . Analysis for the weakly pareto optimum in multiobjective-based hyperspectral band selection . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 6 ): 3729 - 3740 [ DOI: 10.1109/TGRS.2018.2886853 http://dx.doi.org/10.1109/TGRS.2018.2886853 ]
Paoli A , Melgani F and Pasolli E . 2009 . Clustering of hyperspectral images based on multiobjective particle swarm optimization . IEEE Transactions on Geoscience and Remote Sensing , 47 ( 12 ): 4175 - 4188 [ DOI: 10.1109/TGRS.2009.2023666 http://dx.doi.org/10.1109/TGRS.2009.2023666 ]
Patro R N , Subudhi S , Biswal P K and Dell'Acqua F . 2021 . A review on unsupervised band selection techniques: Land cover classification for hyperspectral earth observation data . IEEE Geoscience and Remote Sensing Magazine , 9 ( 3 ): 72 - 111 [ DOI: 10.1109/MGRS.2021.3051979 http://dx.doi.org/10.1109/MGRS.2021.3051979 ]
Piech M A and Piech K R . 1987 . Symbolic representation of hyperspectral data . Applied Optics , 26 ( 18 ): 4018 - 4026 [ DOI: 10.1364/AO.26.004018 http://dx.doi.org/10.1364/AO.26.004018 ]
Plaza A , Martinez P , Perez R and Plaza J . 2004 . A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data . IEEE Transactions on Geoscience and Remote Sensing , 42 ( 3 ): 650 - 663 [ DOI: 10.1109/TGRS.2003.820314 http://dx.doi.org/10.1109/TGRS.2003.820314 ]
Plaza A , Martinez P , Plaza J and Perez R . 2005 . Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations . IEEE Transactions on Geoscience and Remote Sensing , 43 ( 3 ): 466 - 479 [ DOI: 10.1109/TGRS.2004.841417 http://dx.doi.org/10.1109/TGRS.2004.841417 ]
Pu R L and Gong P . 2000 . Hyperspectral Remote Sensing and its Applications . Beijing : Higher Education Press
浦瑞良 , 宫鹏 . 2000 . 高光谱遥感及其应用 . 北京 : 高等教育出版社
Ren Y M , Liao L , Maybank S J , Zhang Y N and Liu X . 2017 . Hyperspectral image spectral-spatial feature extraction via tensor principal component analysis . IEEE Geoscience and Remote Sensing Letters , 14 ( 9 ): 1431 - 1435 [ DOI: 10.1109/LGRS.2017.2686878 http://dx.doi.org/10.1109/LGRS.2017.2686878 ]
Richards J A and Jia X P . 2006 . Remote Sensing Digital Image Analysis. 4th ed . Berlin Heidelberg : Springer-Verlag [ DOI: 10.1007/3-540-29711-1 http://dx.doi.org/10.1007/3-540-29711-1 ]
Roy S K , Das S , Song T C and Chanda B . 2021 . DARecNet-BS: unsupervised dual-attention reconstruction network for hyperspectral band selection . IEEE Geoscience and Remote Sensing Letters , 18 ( 12 ): 2152 - 2156 [ DOI: 10.1109/LGRS.2020.3013235 http://dx.doi.org/10.1109/LGRS.2020.3013235 ]
Serpico S B and Moser G . 2007 . Extraction of spectral channels from hyperspectral images for classification purposes . IEEE Transactions on Geoscience and Remote Sensing , 45 ( 2 ): 484 - 495 [ DOI: 10.1109/TGRS.2006.886177 http://dx.doi.org/10.1109/TGRS.2006.886177 ]
Shen H , Jegelka S and Gretton A . 2009 . Fast kernel-based independent component analysis . IEEE Transactions on Signal Processing , 57 ( 9 ): 3498 - 3511 [ DOI: 10.1109/TSP.2009.2022857 http://dx.doi.org/10.1109/TSP.2009.2022857 ]
Somol P , Pudil P and Kittler J . 2004 . Fast branch and bound algorithms for optimal feature selection . IEEE Transactions on Pattern Analysis and Machine Intelligence , 26 ( 7 ): 900 - 912 [ DOI: 10.1109/TPAMI.2004.28 http://dx.doi.org/10.1109/TPAMI.2004.28 ]
Song M P , Shang X D , Wang Y L , Yu C Y and Chang C I . 2019 . Class information-based band selection for hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 11 ): 8394 - 8416 [ DOI: 10.1109/TGRS.2019.2920891 http://dx.doi.org/10.1109/TGRS.2019.2920891 ]
Song X R , Zou L and Wu L D . 2021 . Detection of subpixel targets on hyperspectral remote sensing imagery based on background endmember extraction . IEEE Transactions on Geoscience and Remote Sensing , 59 ( 3 ): 2365 - 2377 [ DOI: 10.1109/TGRS.2020.3002461 http://dx.doi.org/10.1109/TGRS.2020.3002461 ]
Su H J and Du Q . 2012 . Hyperspectral band clustering and band selection for urban land cover classification . Geocarto International , 27 ( 5 ): 395 - 411 [ DOI: 10.1080/10106049.2011.643322 http://dx.doi.org/10.1080/10106049.2011.643322 ]
Su H J , Du Q , Chen G S and Du P J . 2014 . Optimized hyperspectral band selection using particle swarm optimization . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 7 ( 6 ): 2659 - 2670 [ DOI: 10.1109/JSTARS.2014.2312539 http://dx.doi.org/10.1109/JSTARS.2014.2312539 ]
Su H J , Sheng Y H , Yang H and Du Q . 2011 . Orthogonal projection divergence-based hyperspectral band selection . Spectroscopy and Spectral Analysis , 31 ( 5 ): 1309 - 1313
苏红军 , 盛业华 , Yang H , Du Q . 2011 . 基于正交投影散度的高光谱遥感波段选择算法 . 光谱学与光谱分析 , 31 ( 5 ): 1309 - 1313 [ DOI: 10.3964/jissn1000-0593(2011)05-1309-05 http://dx.doi.org/10.3964/jissn1000-0593(2011)05-1309-05 ]
Su H J , Yang H , Du Q and Sheng Y H . 2011 . Semisupervised band clustering for dimensionality reduction of hyperspectral imagery . IEEE Geoscience and Remote Sensing Letters , 8 ( 6 ): 1135 - 1139 [ DOI: 10.1109/LGRS.2011.2158185 http://dx.doi.org/10.1109/LGRS.2011.2158185 ]
Su H J , Yong B and Du Q . 2016 . Hyperspectral band selection using improved firefly algorithm . IEEE Geoscience and Remote Sensing Letters , 13 ( 1 ): 68 - 72 [ DOI: 10.1109/LGRS.2015.2497085 http://dx.doi.org/10.1109/LGRS.2015.2497085 ]
Sun K , Geng X R , Ji L Y and Lu Y . 2014 . A new band selection method for hyperspectral image based on data quality . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 7 ( 6 ): 2697 - 2703 [ DOI: 10.1109/JSTARS.2014.2320299 http://dx.doi.org/10.1109/JSTARS.2014.2320299 ]
Sun W W , Liu C , Shi B Q and Li W Y . 2013 . Random matrix-based nonnegative sparse representation for hyperspectral image classification . Journal of Tongji University(Natural Science) , 41 ( 8 ): 1274 - 1280
孙伟伟 , 刘春 , 施蓓琦 , 李巍岳 . 2013 . 基于随机矩阵的高光谱影像非负稀疏表达分类 . 同济大学学报(自然科学版) , 41 ( 8 ): 1274 - 1280 [ DOI: 10.3969/j.issn.0253-374x.2013.08.026 http://dx.doi.org/10.3969/j.issn.0253-374x.2013.08.026 ]
Sun W W , Peng J T , Yang G and Du Q . 2020 . Correntropy-based sparse spectral clustering for hyperspectral band selection . IEEE Geoscience and Remote Sensing Letters , 17 ( 3 ): 484 - 488 [ DOI: 10.1109/LGRS.2019.2924934 http://dx.doi.org/10.1109/LGRS.2019.2924934 ]
Sun W W , Zhang L P , Du B , Li W Y and Mark Lai Y . 2015 . Band selection using improved sparse subspace clustering for hyperspectral imagery classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 8 ( 6 ): 2784 - 2797 [ DOI: 10.1109/ JSTARS.2015.2417156 http://dx.doi.org/10.1109/JSTARS.2015.2417156 ]
Sunshine J M , Pieters C M and Pratt S F . 1990 . Deconvolution of mineral absorption bands: an improved approach . Journal of Geophysical Research : Solid Earth , 95 ( B5 ): 6955 - 6966 [ DOI: 10.1029/JB095iB05p06955 http://dx.doi.org/10.1029/JB095iB05p06955 ]
Tan K , Wu F Y , Du Q , Du P J and Chen Y . 2019 . A parallel Gaussian-Bernoulli restricted Boltzmann machine for mining area classification with hyperspectral imagery . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 12 ( 2 ): 627 - 636 [ DOI: 10.1109/JSTARS.2019.2892975 http://dx.doi.org/10.1109/JSTARS.2019.2892975 ]
Tao C , Pan H B , Li Y S and Zou Z R . 2015 . Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification . IEEE Geoscience and Remote Sensing Letters , 12 ( 12 ): 2438 - 2442 [ DOI: 10.1109/LGRS.2015.2482520 http://dx.doi.org/10.1109/LGRS.2015.2482520 ]
Tong Q X , Zhang B and Zheng L F . 2006 . Hyperspectral Remote Sensing: the Principle, Technology and Application . Beijing : Higher Education Press
童庆禧 , 张兵 , 郑兰芬 . 2006 . 高光谱遥感: 原理、技术与应用 . 北京 : 高等教育出版社
Tyo J S , Konsolakis A , Diersen D I and Olsen R C . 2003 . Principal-components-based display strategy for spectral imagery . IEEE Transactions on Geoscience and Remote Sensing , 41 ( 3 ): 708 - 718 [ DOI: 10.1109/TGRS.2003.808879 http://dx.doi.org/10.1109/TGRS.2003.808879 ]
Van der Meer F . 2004 . Analysis of spectral absorption features in hyperspectral imagery . International Journal of Applied Earth Observation and Geoinformation , 5 ( 1 ): 55 - 68 [ DOI: 10.1016/j.jag.2003.09.001 http://dx.doi.org/10.1016/j.jag.2003.09.001 ]
Velasco-Forero S and Angulo J . 2013 . Classification of Hyperspectral Images by Tensor Modeling and Additive Morphological Decomposition . Pattern Recognition , 46 ( 2 ): 566 - 577 [ DOI: 10.1016/j.patcog.2012.08.011 http://dx.doi.org/10.1016/j.patcog.2012.08.011 ]
Wang J and Chang C I . 2006 . Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis . IEEE Transactions on Geoscience and Remote Sensing , 44 ( 6 ): 1586 - 1600 [ DOI: 10.1109/TGRS.2005.863297 http://dx.doi.org/10.1109/TGRS.2005.863297 ]
Wang J L , Hou B , Jiao L C and Wang S . 2020 . POL-SAR image classification based on modified stacked autoencoder network and data distribution . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 3 ): 1678 - 1695 [ DOI: 10.1109/TGRS.2019.2947633 http://dx.doi.org/10.1109/TGRS.2019.2947633 ]
Wang J N , Zheng L F and Tong Q X . 1996 . The spectral absorption identification model and mineral mapping by imaging spectrometer data . Remote Sensing of Environment China , 11 ( 1 ): 20 - 31
王晋年 , 郑兰芬 , 童庆禧 . 1996 . 成象光谱图象光谱吸收鉴别模型与矿物填图研究 . 环境遥感 , 11 ( 1 ): 20 - 31
Wang J X , Ye M C , Xiong F C and Qian Y T . 2021 . Cross-scene hyperspectral feature selection via hybrid whale optimization algorithm with simulated annealing . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 14 : 2473 - 2483 [ DOI: 10.1109/JSTARS.2021.3056593 http://dx.doi.org/10.1109/JSTARS.2021.3056593 ]
Wang Q , Yuan Z H , Du Q and Li X L . 2019 . GETNET: a general end-to-end 2-D CNN framework for hyperspectral image change detection . IEEE Transactions on Geoscience and Remote Sensing , 57 ( 1 ): 3 - 13 [ DOI: 10.1109/TGRS.2018.2849692 http://dx.doi.org/10.1109/TGRS.2018.2849692 ]
Wu C C , Chu S and Chang C I . 2008 . Sequential N-FINDR algorithms // Proceedings Volume 7086 , Imaging Spectrometry XIII. San Diego, CA : SPIE: 106 - 117 [ DOI: 10.1117/12.795262 http://dx.doi.org/10.1117/12.795262 ]
Xia J S , Chanussot J , Du P J and He X Y . 2015a . Spectral-spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields . IEEE Transactions on Geoscience and Remote Sensing , 53 ( 5 ): 2532 - 2546 [ DOI: 10.1109/TGRS.2014.2361618 http://dx.doi.org/10.1109/TGRS.2014.2361618 ]
Xia J S , Falco N , Benediktsson J A , Du P J and Chanussot J . 2017 . Hyperspectral image classification with rotation random forest via KPCA . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 10 ( 4 ): 1601 - 1609 [ DOI: 10.1109/JSTARS.2016.2636877 http://dx.doi.org/10.1109/JSTARS.2016.2636877 ]
Xia J S , Mura M D , Chanussot J , Du P J and He X Y . 2015b . Random subspace ensembles for hyperspectral image classification with extended morphological attribute profiles . IEEE Transactions on Geoscience and Remote Sensing , 53 ( 9 ): 4768 - 4786 [ DOI: 10.1109/ TGRS.2015.2409195 http://dx.doi.org/10.1109/TGRS.2015.2409195 ]
Xie W Y , Li Y S , Lei J , Yang J , Chang C I and Li Z . 2020 . Hyperspectral band selection for spectral–spatial anomaly detection . IEEE Transactions on Geoscience and Remote Sensing , 58 ( 5 ): 3426 - 3436 [ DOI: 10.1109/TGRS.2019.2956159 http://dx.doi.org/10.1109/TGRS.2019.2956159 ]
Xu H Q . 2013 . A remote sensing urban ecological index and its application . Acta Ecologica Sinica , 33 ( 24 ): 7853 - 7862
徐涵秋 . 2013 . 城市遥感生态指数的创建及其应用 . 生态学报 , 33 ( 24 ): 7853 - 7862 [ DOI: 10.5846/stxb201208301223 http://dx.doi.org/10.5846/stxb201208301223 ]
Xue B , Zhang M J and Browne W N . 2013 . Particle swarm optimization for feature selection in classification: a multi-objective approach . IEEE Transactions on Cybernetics , 43 ( 6 ): 1656 - 1671 [ DOI: 10.1109/TSMCB.2012.2227469 http://dx.doi.org/10.1109/TSMCB.2012.2227469 ]
Xue Z H . 2015 . Hyperspectral Remote Sensing Image Classification via Sparse Graph Embedding . Nanjing : Nanjing University
薛朝辉 . 2015 . 高光谱遥感影像稀疏图嵌入分类研究 . 南京 : 南京大学
Yang H , Du Q and Chen G S . 2012 . Particle swarm optimization-based hyperspectral dimensionality reduction for urban land cover classification . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 5 ( 2 ): 544 - 554 [ DOI: 10.1109/JSTARS.2012.2185822 http://dx.doi.org/10.1109/JSTARS.2012.2185822 ]
Yang H , Du Q , Su H J and Sheng Y H . 2011 . An efficient method for supervised hyperspectral band selection . IEEE Geoscience and Remote Sensing Letters , 8 ( 1 ): 138 - 142 [ DOI: 10.1109/LGRS.2010.2053516 http://dx.doi.org/10.1109/LGRS.2010.2053516 ]
Yang H L and Crawford M M . 2016 . Spectral and spatial proximity-based manifold alignment for multitemporal hyperspectral image classification . IEEE Transactions on Geoscience and Remote Sensing , 54 ( 1 ): 51 - 64 [ DOI: 10.1109/TGRS.2015.2449736 http://dx.doi.org/10.1109/TGRS.2015.2449736 ]
Yang J M , Yu P T and Kuo B C . 2010 . A nonparametric feature extraction and its application to nearest neighbor classification for hyperspectral image data . IEEE Transactions on Geoscience and Remote Sensing , 48 ( 3 ): 1279 - 1293 [ DOI: 10.1109/TGRS.2009.2031812 http://dx.doi.org/10.1109/TGRS.2009.2031812 ]
Yao H B and Tian L . 2003 . A genetic-algorithm-based selective principal component analysis (GA-SPCA) method for high-dimensional data feature extraction . IEEE Transactions on Geoscience and Remote Sensing , 41 ( 6 ): 1469 - 1478 [ DOI: 10.1109/TGRS.2003.811691 http://dx.doi.org/10.1109/TGRS.2003.811691 ]
Zare A and Gader P . 2008 . Hyperspectral band selection and endmember detection using sparsity promoting priors . IEEE Geoscience and Remote Sensing Letters , 5 ( 2 ): 256 - 260 [ DOI: 10.1109/LGRS.2008.915934 http://dx.doi.org/10.1109/LGRS.2008.915934 ]
Zha Y , Gao J and Ni S . 2003 . Use of normalized difference built-up index in automatically mapping urban areas from TM imagery . International Journal of Remote Sensing , 24 ( 3 ): 583 - 594 [ DOI: 10.1080/01431160304987 http://dx.doi.org/10.1080/01431160304987 ]
Zhang B . 2011a . Intelligent remote sensing satellite system . Journal of Remote Sensing , 15 ( 3 ): 415 - 431
张兵 . 2011 . 智能遥感卫星系统 . 遥感学报 , 15 ( 3 ): 415 - 431 [ DOI: CNKI:SUN:YGXB.0.2011-03-003 http://dx.doi.org/CNKI:SUN:YGXB.0.2011-03-003 ]
Zhang B . 2016 . Advancement of hyperspectral image processing and information extraction . Journal of Remote Sensing , 20 ( 5 ): 1062 - 1090
张兵 . 2016 . 高光谱图像处理与信息提取前沿 . 遥感学报 , 20 ( 5 ): 1062 - 1090 [ DOI: 10.11834/jrs.20166179 http://dx.doi.org/10.11834/jrs.20166179 ]
Zhang B , Chen Z C , Zheng L F , Tong Q X , Liu Y N , Yang Y D and Xue Y Q . 2004 . Object detection based on feature extraction from hyperspectral imagery and convex cone projection transform . Journal of Infrared and Millimeter Waves , 23 ( 6 ): 441 - 445 , 450
张兵 , 陈正超 , 郑兰芬 , 童庆禧 , 刘银年 , 杨一德 , 薛永祺 . 2004 . 基于高光谱图像特征提取与凸面几何体投影变换的目标探测 . 红外与毫米波学报 , 23 ( 6 ): 441- 445 , 450 [ DOI: 10.3321/j.issn:1001-9014.2004.06.010 http://dx.doi.org/10.3321/j.issn:1001-9014.2004.06.010 ]
Zhang B and Gao L R . 2011b . Hyperspectral Image Classification and Target Detection . Beijing : Science Press
张兵 , 高连如 . 2011 . 高光谱图像分类与目标探测 . 北京 : 科学出版社
Zhang J X , Zhang P , Li B C , Jing L and Lv T L . 2020 . Semisupervised feature extraction based on collaborative label propagation for hyperspectral images . IEEE Geoscience and Remote Sensing Letters , 17 ( 11 ): 1958 - 1962 [ DOI: 10.1109/LGRS.2019.2958410 http://dx.doi.org/10.1109/LGRS.2019.2958410 ]
Zhang L F , Zhang L P , Tao D C and Huang X . 2012 . On combining multiple features for hyperspectral remote sensing image classification . IEEE Transactions on Geoscience and Remote Sensing , 50 ( 3 ): 879 - 893 [ DOI: 10.1109/TGRS.2011.2162339 http://dx.doi.org/10.1109/TGRS.2011.2162339 ]
Zhang L F , Zhang Q , Du B , Huang X , Tang Y Y and Tao D C . 2018a . Simultaneous spectral-spatial feature selection and extraction for hyperspectral images . IEEE Transactions on Cybernetics , 48 ( 1 ): 16 - 28 [ DOI: 10.1109/TCYB.2016.2605044 http://dx.doi.org/10.1109/TCYB.2016.2605044 ]
Zhang L P and Zhang L F . 2011 . Hyperspectral Remote Sensing . Beijing : China Surveying and Mapping Press
张良培 , 张立福 . 2011 . 高光谱遥感 . 北京 : 测绘出版社
Zhang L P , Zhang L F , Tao D C and Huang X . 2013 . Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction . IEEE Transactions on Geoscience and Remote Sensing , 51 ( 1 ): 242 - 256 [ DOI: 10.1109/TGRS.2012.2197860 http://dx.doi.org/10.1109/TGRS.2012.2197860 ]
Zhang L P , Zhong Y F , Huang B , Gong J Y and Li P X . 2007 . Dimensionality reduction based on clonal selection for hyperspectral imagery . IEEE Transactions on Geoscience and Remote Sensing , 45 ( 12 ): 4172 - 4186 [ DOI: 10.1109/TGRS.2007.905311 http://dx.doi.org/10.1109/TGRS.2007.905311 ]
Zhang X R , Gao Z Y , Jiao L C and Zhou H Y . 2018b . Multifeature hyperspectral image classification with local and nonlocal spatial information via Markov random field in semantic space . IEEE Transactions on Geoscience and Remote Sensing , 56 ( 3 ): 1409 - 1424 [ DOI: 10.1109/TGRS.2017.2762593 http://dx.doi.org/10.1109/TGRS.2017.2762593 ]
Zhang Y H and Prasad S . 2015 . Locality preserving composite kernel feature extraction for multi-source geospatial image analysis . IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , 8 ( 3 ): 1385 - 1392 [ DOI: 10.1109/JSTARS.2014.2348537 http://dx.doi.org/10.1109/JSTARS.2014.2348537 ]
Zhong Z S , Fan B , Duan J Y , Wang L F , Ding K , Xiang S M and Pan C H . 2015 . Discriminant tensor spectral-spatial feature extraction for hyperspectral image classification . IEEE Geoscience and Remote Sensing Letters , 12 ( 5 ): 1028 - 1032 [ DOI: 10.1109/LGRS.2014.2375188 http://dx.doi.org/10.1109/LGRS.2014.2375188 ]
相关作者
相关机构
京公网安备11010802024621
