适应复杂区域的时序SAR影像洪水监测与分析
Flood monitoring and analysis based on time-series SAR image for complex area
- 2024年28卷第2期 页码:346-358
纸质出版日期: 2024-02-07
DOI: 10.11834/jrs.20211228
扫 描 看 全 文
浏览全部资源
扫码关注微信
纸质出版日期: 2024-02-07 ,
扫 描 看 全 文
李聪妤,刘家奇,刘欣鑫,李树涛,康旭东.2024.适应复杂区域的时序SAR影像洪水监测与分析.遥感学报,28(2): 346-358
Li C Y,Liu J Q,Liu X X,Li S T and Kang X D. 2024. Flood monitoring and analysis based on time-series SAR image for complex area. National Remote Sensing Bulletin, 28(2):346-358
洪涝灾害对中国沿湖沿江地带的国家经济和人民财产威胁巨大。针对洪涝灾害期间光学影像质量低,单幅SAR(Synthetic Aperture Radar)影像水体提取多依赖经验阈值且可靠性不足等问题,本文提出了一种适应复杂区域的时序SAR影像洪水监测方法。为获取完整的洪水淹没区域,首先结合影像序列的统计分析结果,设计了两个归一化差异指数——突出临时洪水的淹没范围提取指数SREI(Submerged Range Extraction Index)和突出矮植被覆盖的植被区淹没范围提取指数SRVEI(Submerged Range in Vegetation area Extraction Index);然后,根据同一区域植被季候性分布较为稳定的前提,给出了阈值的自适应选取方式;最后,考虑中国湖泊周围地物特点,构建了适应的后处理过程,优化提取区域,形成了洪水淹没区域提取与监测的详细流程和通用框架。本文以东洞庭湖流域为主要研究区域验证了方法的提取精度,并在此基础上进行了2020年东洞庭湖流域洪涝灾害态势分析和洪水淹没地物分析,展示了方法在洪涝灾害监测评估上的应用性能。另外,本文还将该方法应用于东洞庭湖流域往年数据,进行了汛期洪水淹没范围年际分析,并添加了同年鄱阳湖洪水淹没区域的实验,验证了方法时空应用的稳定性。相关实验结果表明,本文方法对洪水淹没区域的提取精度高,用户依赖性低,可跨越时空地应用于不同洪水淹没区域监测场景,且可以初步区分不同属性的洪水淹没范围,能够为本文涉及区域及其他区域的洪涝灾害监测、评估和预警提供一定的参考。
Flood disasters are a great threat to the national economy and people’s property along the lakes and rivers in China. Synthetic Aperture Radar (SAR) adopts active imaging methods that can realize all-weather imaging and ensure continuous observation of flood disaster areas under severe weather
such as heavy rains and clouds. The current flood-monitoring methods based on SAR images often have problems
such as difficulty in threshold selection
high computational cost
or inefficient use of time-series information. Aiming at the above problems
this paper makes full use of information from time-series SAR image sequence to design an effective and stable method of monitoring flood
which can be adapted to complex areas.
Through preprocessing and statistical analysis of the image sequence
two normalized difference indices including submerged range extraction index and submerged range in vegetation area extraction index are designed and applied to calculate the candidate area of flood inundation. Then
the adaptive selection method of threshold for flood extraction is given based on the stability assumption of vegetation seasonal distribution in the same area. Finally
considering the characteristics of the surrounding features of the lakes in China
a post-processing process is designed. The process involves removing spots and holes
excluding areas with large slopes and filtering out fragmented areas with large rectangular degrees. Post-processing is conducted to optimize the extraction area for the final results of flood-inundation range.
In the experiment
this paper takes the East Dongting Lake basin as the main research area to verify the effectiveness of the proposed method by comparing the extraction accuracy with the other four methods. Experimental results prove that the overall extraction accuracy of the proposed method is higher than that of all comparative methods. To achieve the purpose of flood-disaster monitoring and evaluation
an analysis of the flood-disaster situation in the East Dongting Lake Basin in 2020 and an analysis of flood submerged land cover types are conducted. The method has also been successfully applied to the data of the East Dongting Lake basin in previous years and the Poyang Lake basin in that the method can be applied across time and space.
Based on the time-series SAR image sequence
this paper proposes an effective method
forms a detailed process flow
and constructs a general framework for flood monitoring. The proposed method has advantages of simple parameter setting and low user dependence on threshold determination. Experiments show that the method has high extraction accuracy of submerged areas with good robustness and versatility. The proposed method can be applied to different flood-monitoring scenarios across time and space and can preliminarily distinguish different attributes of submerged areas. Thus
a certain reference is provided for flood-disaster monitoring
assessment
and early warning in other regions.
洪涝灾害合成孔径雷达时序监测水文遥感SAR洞庭湖
flood disastersynthetic aperture radartime series monitoringhydrological remote sensingSARDongting Lake
Amitrano D, Di Martino G, Iodice A, Riccio D and Ruello G. 2018. Unsupervised rapid flood mapping using sentinel-1 GRD SAR images. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3290-3299 [DOI: 10.1109/TGRS.2018.2797536http://dx.doi.org/10.1109/TGRS.2018.2797536]
Boni G, Ferraris L, Pulvirenti L, Squicciarino G, Pierdicca N, Candela L, Pisani A R, Zoffoli S, Onori R, Proietti C and Pagliara P. 2016. A prototype system for flood monitoring based on flood forecast combined with COSMO-SkyMed and Sentinel-1 Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6): 2794-2805 [DOI: 10.1109/JSTARS.2016.2514402http://dx.doi.org/10.1109/JSTARS.2016.2514402]
Chen X W. 1997. The application of remote sensing and geographical information system (GIS) in flood damage analysis. Journal of Hydraulic Engineering, (3): 70-73
陈秀万. 1997. 遥感与GIS在洪水灾情分析中的应用. 水利学报, (3): 70-73 [DOI: 10.13243/j.cnki.slxb.1997.03.011http://dx.doi.org/10.13243/j.cnki.slxb.1997.03.011]
Chini M, Hostache R, Giustarini L and Matgen P. 2017. A hierarchical split-based approach for parametric thresholding of SAR images: flood inundation as a test case. IEEE Transactions on Geoscience and Remote Sensing, 55(12): 6975-6988 [DOI: 10.1109/TGRS.2017.2737664http://dx.doi.org/10.1109/TGRS.2017.2737664]
Chini M, Pelich R, Pulvirenti L, Pierdicca N, Hostache R and Matgen P. 2019. Sentinel-1 InSAR coherence to detect floodwater in urban areas: Houston and Hurricane Harvey as a test case. Remote Sensing, 11(2): 107 [DOI: 10.3390/rs11020107http://dx.doi.org/10.3390/rs11020107]
Cian F, Marconcini M and Ceccato P. 2018. Normalized difference flood index for rapid flood mapping: taking advantage of EO big data. Remote Sensing of Environment, 209: 712-730 [DOI: 10.1016/j.rse.2018.03.006http://dx.doi.org/10.1016/j.rse.2018.03.006]
Clement M A, Kilsby C G and Moore P. 2018. Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2): 152-168 [DOI: 10.1111/jfr3.12303http://dx.doi.org/10.1111/jfr3.12303]
Gao W, Shen Q, Li M F and Hou J D. 2018. Analysis of time-serial monitoring of flood extent based on multi-source remote sensing data. Geomatics and Spatial Information Technology, 41(7): 8-10, 14
高伟, 沈秋, 李梦璠, 侯俊东. 2018. 基于多源遥感数据的洪涝淹没范围时序监测分析. 测绘与空间地理信息, 41(7): 8-10, 14 [DOI: 10.3969/j.issn.1672-5867.2018.07.003http://dx.doi.org/10.3969/j.issn.1672-5867.2018.07.003]
Giustarini L, Hostache R, Matgen P, Schumann G J P, Bates P D and Mason D C. 2013. A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Transactions on Geoscience and Remote Sensing, 51(4): 2417-2430 [DOI: 10.1109/TGRS.2012.2210901http://dx.doi.org/10.1109/TGRS.2012.2210901]
Gong P, Chen B, Li X C, Liu H, Wang J, Bai Y Q, Chen J M, Chen X, Fang L, Feng S L, Feng Y J, Gong Y L, Gu H, Huang H B, Huang X C, Jiao H Z, Kang Y D, Lei G B, Li A N, Li X T, Li X, Li Y C, Li Z L, Li Z D, Liu C, Liu C X, Liu M C, Liu S G, Mao W L, Miao C H, Ni H, Pan Q S, Qi S H, Ren Z H, Shan Z R, Shen S Q, Shi M J, Song Y M, Su M, Ping Suen H, Sun B, Sun F D, Sun J, Sun L, Sun W Y, Tian T, Tong X H, Tseng Y, Tu Y, Wang H, Wang L, Wang X, Wang Z M, Wu T H, Xie Y W, Yang J, Yang J, Yuan M, Yue W Z, Zeng H D, Zhang K, Zhang N, Zhang T, Zhang Y, Zhao F, Zheng Y C, Zhou Q M, Clinton N, Zhu Z L and Xu B. 2020. Mapping essential urban land use categories in China (EULUC-China): preliminary results for 2018. Science Bulletin, 65(3): 182-187 [DOI: 10.1016/j.scib.2019.12.007http://dx.doi.org/10.1016/j.scib.2019.12.007]
Greifeneder F, Wagner W, Sabel D and Naeimi V. 2014. Suitability of SAR imagery for automatic flood mapping in the lower Mekong basin. International Journal of Remote Sensing, 35(8): 2857-2874 [DOI: 10.1080/01431161.2014.890299http://dx.doi.org/10.1080/01431161.2014.890299]
Guo Y C and Liu Y T. 2020. The No. 1 flood of 2020 in Poyang Lake, Jiangxi is formed. CCTV news. 2020-07-06.https://m.news.cctv.com/2020/07/06/ARTIoaMs29AVtWX7DhZk2NSp200706.shtmlhttps://m.news.cctv.com/2020/07/06/ARTIoaMs29AVtWX7DhZk2NSp200706.shtml
郭一淳, 刘昀彤. 2020. 江西鄱阳湖2020年第1号洪水形成. 央视新闻.2020-07-06.https://m.news.cctv.com/2020/07/06/ARTIoaMs29AVtWX7DhZk2NSp200706.shtmlhttps://m.news.cctv.com/2020/07/06/ARTIoaMs29AVtWX7DhZk2NSp200706.shtml
Huang P, Xu X H and Li D L. 2018. Rapid extraction of water area in Poyang Lake based on Sentinel-1 satellite images. Journal of Water Resources Research, 7(5): 483-491
黄萍, 许小华, 李德龙. 2018. 基于Sentinel-1卫星数据快速提取鄱阳湖水体面积. 水资源研究, 7(5): 483-491 [DOI: 10.12677/JWRR.2018.75054http://dx.doi.org/10.12677/JWRR.2018.75054]
Kittler J and Illingworth J. 1986. Minimum error thresholding. Pattern Recognition, 19(1): 41-47 [DOI: 10.1016/0031-3203(86)90030-0http://dx.doi.org/10.1016/0031-3203(86)90030-0]
Kuenzer C, Guo H D, Schlegel I, Tuan V Q, Li X W and Dech S. 2013. Varying scale and capability of Envisat ASAR-WSM, TerraSAR-X Scansar and TerraSAR-X Stripmap data to assess urban flood situations: a case study of the Mekong delta in can tho province. Remote Sensing, 5(10): 5122-5142 [DOI: 10.3390/rs5105122http://dx.doi.org/10.3390/rs5105122]
Li N, Wang R, Liu Y B, Du K N, Chen J Q and Deng Y K. 2014. Robust river boundaries extraction of dammed lakes in mountain areas after Wenchuan Earthquake from high resolution SAR images combining local connectivity and ACM. ISPRS Journal of Photogrammetry and Remote Sensing, 94: 91-101 [DOI: 10.1016/j.isprsjprs.2014.04.020http://dx.doi.org/10.1016/j.isprsjprs.2014.04.020]
Li Y, Martinis S, Wieland M, Schlaffer S and Natsuaki R. 2019. Urban flood mapping using SAR intensity and interferometric coherence via Bayesian network fusion. Remote Sensing, 11(19): 2231 [DOI: 10.3390/rs11192231http://dx.doi.org/10.3390/rs11192231]
Liang J Y and Liu D S. 2020. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 53-62 [DOI: 10.1016/j.isprsjprs.2019.10.017http://dx.doi.org/10.1016/j.isprsjprs.2019.10.017]
Liu Z F, Yao Z J and Wang R. 2016. Assessing methods of identifying open water bodies using Landsat 8 OLI imagery. Environmental Earth Sciences, 75(10): 873 [DOI: 10.1007/s12665-016-5686-2http://dx.doi.org/10.1007/s12665-016-5686-2]
Long S, Fatoyinbo T E and Policelli F. 2014. Flood extent mapping for Namibia using change detection and thresholding with SAR. Environmental Research Letters, 9(3): 035002 [DOI: 10.1088/1748-9326/9/3/035002http://dx.doi.org/10.1088/1748-9326/9/3/035002]
Luo Y G, Li Q H and Wang L. 2020-07-11(A03). The water of Dongting Lake “occupies” hundreds of meters of Baling Square. Xiaoxiang Morning News
骆一歌, 李琼皓, 王亮. 2020-07-11(A03). 洞庭湖水“侵占”数百米巴陵广场. 潇湘晨报
Luo Y G and Tong Y Y. 2020-07-11(A03). Search and rescue trapped people in the dark in the water. Xiaoxiang Morning News
骆一歌, 童滢滢. 2020-07-11(A03). 水中摸黑搜寻救出被困人员. 潇湘晨报
Martinis S, Kersten J and Twele A. 2015a. A fully automated TerraSAR-X based flood service. ISPRS Journal of Photogrammetry and Remote Sensing, 104: 203-212 [DOI: 10.1016/j.isprsjprs.2014.07.014http://dx.doi.org/10.1016/j.isprsjprs.2014.07.014]
Martinis S, Kuenzer C, Wendleder A, Huth J, Twele A, Roth A and Dech S. 2015b. Comparing four operational SAR-based water and flood detection approaches. International Journal of Remote Sensing, 36(13): 3519-3543 [DOI: 10.1080/01431161.2015.1060647http://dx.doi.org/10.1080/01431161.2015.1060647]
Martinis S and Rieke C. 2015. Backscatter analysis using multi-temporal and multi-frequency SAR data in the context of flood mapping at River Saale, Germany. Remote Sensing, 7(6): 7732-7752 [DOI: 10.3390/rs70607732http://dx.doi.org/10.3390/rs70607732]
Otsu N. 1978. Discriminant and least square threshold selection//Proc 4IJCPR. [s.l.]: [s.n.], 592-596
Pulvirenti L, Pierdicca N, Chini M and Guerriero L. 2011. An algorithm for operational flood mapping from Synthetic Aperture Radar (SAR) data using fuzzy logic. Natural Hazards and Earth System Sciences, 11(2): 529-540 [DOI: 10.5194/nhess-11-529-2011http://dx.doi.org/10.5194/nhess-11-529-2011]
Rao P Z, Jiang W G, Wang X Y and Chen K. 2019. Flood disaster analysis based on MODIS data-Taking the flood in Dongting Lake area in 2017 as an example. Journal of Catastrophology, 34(1): 203-207
饶品增, 蒋卫国, 王晓雅, 陈坤. 2019. 基于MODIS数据的洪涝灾害分析研究——以2017年洞庭湖区洪水为例. 灾害学, 34(1): 203-207 [DOI: 10.3969/j.issn.1000-811X.2019.01.037http://dx.doi.org/10.3969/j.issn.1000-811X.2019.01.037]
Shen X Y, Anagnostou E N, Allen G H, Brakenridge G R and Kettner A J. 2019. Near-real-time non-obstructed flood inundation mapping using synthetic aperture radar. Remote Sensing of Environment, 221: 302-315 [DOI: 10.1016/j.rse.2018.11.008http://dx.doi.org/10.1016/j.rse.2018.11.008]
Sun F D, Sun W X, Chen J and Gong P. 2012. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33(21): 6854-6875 [DOI: 10.1080/01431161.2012.692829http://dx.doi.org/10.1080/01431161.2012.692829]
Sun W W, Yang G, Chen C, Chang M H, Huang K, Meng X Z and Liu L Y. 2020. Development status and literature analysis of China's earth observation remote sensing satellites. Journal of Remote Sensing, 24(5): 479-510
孙伟伟, 杨刚, 陈超, 常明会, 黄可, 孟祥珍, 刘良云. 2020. 中国地球观测遥感卫星发展现状及文献分析. 遥感学报, 24(5): 479-510 [DOI: 10.11834/jrs.20209464http://dx.doi.org/10.11834/jrs.20209464]
Tong X H, Luo X, Liu S G, Xie H, Chao W, Liu S, Liu S J, Makhinov A N, Makhinova A F and Jiang Y Y. 2018. An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 136: 144-153 [DOI: 10.1016/j.isprsjprs.2017.11.006http://dx.doi.org/10.1016/j.isprsjprs.2017.11.006]
Twele A, Cao W X, Plank S and Martinis S. 2016. Sentinel-1-based flood mapping: a fully automated processing chain. International Journal of Remote Sensing, 37(13): 2990-3004 [DOI: 10.1080/01431161.2016.1192304http://dx.doi.org/10.1080/01431161.2016.1192304]
Wang J P, Liu T, Yu Z Q, Hu T G, Zhang D R, Xun D D and Wang D H. 2016. A research on town flood information rapid extraction based on COSMO-SkyMed and SPOT-5. Remote Sensing Technology and Application, 31(3): 564-571
王嘉芃, 刘婷, 俞志强, 胡潭高, 张登荣, 寻丹丹, 王冬海. 2016. 基于COSMO-SkyMed和SPOT-5的城镇洪水淹没信息快速提取研究. 遥感技术与应用, 31(3): 564-571 [DOI: 10.11873/j.issn.1004-0323.2016.3.0564http://dx.doi.org/10.11873/j.issn.1004-0323.2016.3.0564]
Wang Y B, Ma J, Xiao X M, Wang X X, Dai S Q and Zhao B. 2019. Long-term dynamic of Poyang Lake surface water: a mapping work based on the Google Earth Engine cloud platform. Remote Sensing, 11(3): 313 [DOI: 10.3390/rs11030313http://dx.doi.org/10.3390/rs11030313]
Wang Z H, Li G and Jiang X. 2020. Flooded area detection method based on fusion of optical and SAR remote sensing images. Journal of Radars, 9(3): 539-553
王志豪, 李刚, 蒋骁. 2020. 基于光学和SAR遥感图像融合的洪灾区域检测方法. 雷达学报, 9(3): 539-553 [DOI: 10.12000/JR19095http://dx.doi.org/10.12000/JR19095]
Yang C W. 2019. Hunan Province successfully avoided 567 geological disasters during the flood season April-September) of 2019. Red Net. (2019-09-30.https://hn.rednet.cn/content/2019/09/30/6082184.htmlhttps://hn.rednet.cn/content/2019/09/30/6082184.html
杨朝文. 2019. 2019年汛期4月—9月)湖南省成功避让地质灾害567起. 红网. (2019-09-30. https://hn.rednet.cn/content/2019/09/30/6082184.htmlhttps://hn.rednet.cn/content/2019/09/30/6082184.html
Yang Y and Yang C W. 2020. In-depth interpretation: what is the difference between the flood situation in Hunan in 2020 and 1998? How will it develop in the future? Red Net.2020-07-20. https://hn.rednet.cn/content/2020/07/20/7685115.htmlhttps://hn.rednet.cn/content/2020/07/20/7685115.html
杨艳, 杨朝文. 2020. 深度解读: 2020年湖南汛情与1998年有哪些不同?未来如何发展?红网. 2020-07-20. https://hn.rednet.cn/content/2020/07/20/7685115.htmlhttps://hn.rednet.cn/content/2020/07/20/7685115.html
相关作者
相关机构