基于GEE与多源遥感数据融合反演高时空分辨率物候
Accurately retrieving vegetation phenology at high spatial and temporal resolutions based on GEE and multi-source remote sensing data fusion
- 2023年 页码:1-18
网络出版日期: 2023-10-20
DOI: 10.11834/jrs.20232646
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2023-10-20 ,
扫 描 看 全 文
宋杰,张朝,韩继冲.XXXX.基于GEE与多源遥感数据融合反演高时空分辨率物候.遥感学报,XX(XX): 1-18
Song Jie,Zhang Zhao,Han Jichong. XXXX. Accurately retrieving vegetation phenology at high spatial and temporal resolutions based on GEE and multi-source remote sensing data fusion. National Remote Sensing Bulletin, XX(XX):1-18
高成本与有限范围的实地监测已经无法满足植被物候研究的要求,而遥感物候监测方式又经常受到卫星传感器的时空分辨率等限制,这些局限使得图像融合成为高精度植被物候反演的关键。本研究基于Google Earth Engine(GEE)平台,以四个PhenoCam物候相机所观测的水稻、落叶林、玉米和灌木为研究对象,利用ESTARFM(Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model)算法融合Landsat8影像与MODIS产品,生成了2018年1d、3d、5d、7d、9d、11d的30m遥感EVI时间序列,并采用Savitzky-Golay滤波和Maximum Separation方法提取生长季开始期(Start of Season,SOS)、结束期(End of Season,EOS)、生长季长度(Length of Season,LOS)等物候信息。我们发现:(1)与实测物候对比,整体上呈现时间分辨率越高,物候误差越低的趋势,且当时间分辨率小于7d时,融合物候的误差基本处在同一水平;(2)融合影像与Landsat8影像的空间特征基本一致,空间效率(Spatial Efficiency,SPAEF)指标为0.14-0.74,其中水稻、灌木与实际的空间一致性偏低;(3)融合结果与实地观测到的时间变化趋势吻合(RMSE: 0.01-0.02,r: 0.73-0.95),可以反演出较为准确的物候参数,SOS、EOS、LOS的平均误差为4.25d、4.75d、7.5d;(4)与MODIS物候反演结果相比,非农用地(落叶林和灌木)的物候参数误差缩小较为明显,而农业用地(水稻和玉米)的提升效果相对较小。本研究从空间和时间维度验证了ESTARFM算法生成的高时间分辨率EVI序列的可靠性,评估了其在物候监测能力上相比MODIS数据的提升效果,并探讨了影响融合效果的因素,可为精细化的植被动态监测和生态系统研究提供理论支撑和数据参考。
Vegetation phenology is referred to be the most direct and sensitive indicator for assessing the environmental changes. Currently
costly and limited in-situ observations at field scales are impractical for phenology monitoring. Alternatively
various aspects of phenology have been successfully characterized by remote sensing images. Due to the trade-off between spatial and temporal resolutions of satellite sensors
image fusion becomes the breakthrough for deriving fine-resolution phenological metrics. Most existing studies have retrieved phenology with sparse time series (with intervals > 8 days)
consequently failing to capture the small intra-annual variations in phenology. Additionally
few scholars used relatively dense time series
but obtained less robust results. Thus
it is necessary to extract phenological metrics from fused results at finer temporal resolutions
and comprehensively validate them to expand our knowledge on the fusion method.In this study
we implemented a spatiotemporal fusion called ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) on the Google Earth Engine (GEE) platform. By leveraging it
we generated 30m time series of EVI with different resolutions (1d
3d
5d
7d
9d
11d) by fusing Landsat8 and MODIS images in 2018. We selected four PhenoCam sites in north America
of which the predominant vegetation types are paddy rice
deciduous forests
corn and shrubs (hereinafter referred to Cam1-Cam4
respectively). And we used Savitzky-Golay filtering and Maximum Separation method to estimate phenological metrics such as Start of Season (SOS)
End of Season (EOS)
Length of Season (LOS). We evaluated the effect of temporal resolutions on the phenometrics derived from the fusion results with field data (from PhenoCam project). Then we used the daily fused time series for further illustration. The fused images were validated by true Landsat8 observations with sufficient unmasked pixels. Finally
we used MODIS data to assess the improvement of accuracy of derived phenometrics fusion results.We generated 133
273
126
288 images by ESTARFM at daily resolution at Cam1-Cam4
respectively. These fused images obtain more spatial phenological details than lower-resolution images (e.g. MODIS)
and the errors of phenometrics derived from fusion results generally increase along with temporal resolutions. And the errors become rather more obvious when the time resolution reaches 7d. We conduct research and discussions under daily resolution: the correlational results prove that fused images can accurately capture reliable spatial patterns with SPAEF (Spatial Efficiency) ranging from 0.14 to 0.74
and are temporally consistent with field observations (RMSE: 0.01-0.02
r: 0.73-0.95). The derived phenological metrics are relatively accurate
with mean errors of 4.25d
4.75d and 7.5d for SOS
EOS
LOS
respectively. Comparing with MODIS data
ESTARFM reduces the errors of fusion-derived phenometrics for deciduous forests and shrubs evidently.This research deployed a new framework on the GEE platform to estimate phenological metrics derived from satellite images fused by ESTARFM and assessed the accuracy with field data in North America. Our findings revealed the reliability of the EVI time series with fine resolutions generated by ESTARFM. This framework helps us to obtain more authentic details of spatiotemporal phenological distributions. We are sure our study will provide important supportive theories and data basis for the issues concerning vegetation dynamics and ecosystem.
植被物候,ESTARFM,MaximumSeparation方法,PhenoCam,GoogleEarthEngine(GEE)
vegetation phenologyESTARFMmaximum separation methodPhenoCamGoogle Earth Engine (GEE)
Alemu W G, Henebry G M and Melesse A M. 2019. Land surface phenologies and seasonalities in the US prairie pothole region coupling AMSR passive microwave data with the USDA cropland data layer. Remote Sensing, 11(21): 2550. [DOI: 10.3390/rs11212550http://dx.doi.org/10.3390/rs11212550]
Augustine D, Davidson A, Dickinson K and Van Pelt B. 2021. Thinking like a grassland: Challenges and opportunities for biodiversity conservation in the Great Plains of North America. Rangeland Ecology & Management, 78: 281–95. [DOI: 10.1016/j.rama.2019.09.001http://dx.doi.org/10.1016/j.rama.2019.09.001]
Bawa R and Dwivedi P. 2019. Impact of land cover on groundwater quality in the Upper Floridan Aquifer in Florida, United States. Environmental pollution, 252: 1828–40. [DOI: 10.1016/j.envpol.2019.06.054http://dx.doi.org/10.1016/j.envpol.2019.06.054]
Boryan C, Yang Z, Mueller R and Craig M. 2011. Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto International, 26(5): 341–58. [DOI: 10.1080/10106049.2011.562309http://dx.doi.org/10.1080/10106049.2011.562309]
Boryan C G, Yang Z, Willis P and Di L. 2017. Developing crop specific area frame stratifications based on geospatial crop frequency and cultivation data layers. Journal of integrative agriculture, 16(2): 312–23. [DOI: 10.1016/S2095-3119(16)61396-5http://dx.doi.org/10.1016/S2095-3119(16)61396-5]
Bradley A V, Gerard F F, Barbier N, Weedon G P, Anderson L O, Huntingford C, Aragão L E O C, Zelazowski P and Arai E. 2011. Relationships between phenology, radiation and precipitation in the Amazon region. Global Change Biology, 17(6): 2245-60. [DOI: 10.1111/j.1365-2486.2011.02405.xhttp://dx.doi.org/10.1111/j.1365-2486.2011.02405.x]
Chen X, Wang D, Chen J, Wang C and Shen M. 2018. The mixed pixel effect in land surface phenology: A simulation study. Remote Sensing of Environment, 211: 338-44. [DOI: 10.1016/j.rse.2018.04.030http://dx.doi.org/10.1016/j.rse.2018.04.030]
Demirel M C, Mai J, Mendiguren G Koch J, Samaniego L and Stisen S. 2018. Combining satellite data and appropriate objective functions for improved spatial pattern performance of a distributed hydrologic model. Hydrology and Earth System Sciences, 22: 1299-1315. [DOI: 10.5194/hess-22-1299-2018http://dx.doi.org/10.5194/hess-22-1299-2018]
Descals A, Verger A, Yin G and Penuelas J. 2021. A threshold method for robust and fast estimation of land-surface phenology using Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 601-606. [DOI: 10.1109/JSTARS.2020.3039554http://dx.doi.org/10.1109/JSTARS.2020.3039554]
Dixit A, Goswami A and Jain S. 2019. Development and evaluation of a new “Snow Water Index (SWI)” for accurate snow cover delineation. Remote Sensing, 11(23): 2774. [DOI: 10.3390/rs11232774http://dx.doi.org/10.3390/rs11232774]
Drexler J Z, de Fontaine C S and Deverel S J. 2009. The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA. Wetlands, 29(1): 372-386. [DOI: 10.1672/08-97.1http://dx.doi.org/10.1672/08-97.1]
Dyer S A and Dyer J S. 2001. Cubic-spline interpolation. 1. IEEE Instrumentation & Measurement Magazine, 4(1): 44-6. [DOI: 10.1109/5289.911175http://dx.doi.org/10.1109/5289.911175]
Feigl M, Herrnegger M, Klotz D and Schulz K. 2020. Function space optimization: A symbolic regression method for estimating parameter transfer functions for hydrological models. Water Resources Research, 56(10): e2020WR027385. [DOI: 10.1029/2020WR027385http://dx.doi.org/10.1029/2020WR027385]
Fensholt R, Sandholt I and Stisen S. 2006. Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment. Geoscience and Remote Sensing, IEEE Transactions on, 44: 1774 - 86. [DOI: 10.1109/TGRS.2006.875940http://dx.doi.org/10.1109/TGRS.2006.875940]
Gao F, Anderson M C, Zhang X, Yang Z, Alfieri J G, Kustas W P, Mueller R, Johnson D M and Prueger J H. 2017. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, 188: 9-25. [DOI: 10.1016/j.rse.2016.11.004http://dx.doi.org/10.1016/j.rse.2016.11.004]
Gao F, Masek J, Schwaller M and Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. Ieee Transactions on Geoscience and Remote Sensing, 44(8): 2207-18. [DOI: 10.1109/tgrs.2006.872081http://dx.doi.org/10.1109/tgrs.2006.872081]
Gao X J, Gray J M, and Reich B J. 2021. Long-term, medium spatial resolution annual land surface phenology with a Bayesian hierarchical model. Remote Sensing of Environment, 261: 112484. [DOI: 10.1016/j.rse.2021.112484http://dx.doi.org/10.1016/j.rse.2021.112484]
Ge C, Sun S, Yao R, Sun P, Li M and Bian Y. 2022. Long-term vegetation phenology changes and response to multi-scale meteorological drought on the Loess Plateau, China. Journal of Hydrology, 614: 128605. [DOI: 10.1016/j.jhydrol.2022.128605http://dx.doi.org/10.1016/j.jhydrol.2022.128605]
Gervais N, Buyantuev A and Gao F. 2017. Modeling the effects of the urban built-up environment on plant phenology using fused satellite data. Remote Sensing, 9(1): 99. [DOI: 10.3390/rs9010099http://dx.doi.org/10.3390/rs9010099]
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D and Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18-27. [DOI: 10.1016/j.rse.2017.06.031http://dx.doi.org/10.1016/j.rse.2017.06.031]
Grillakis M G, Doupis G, Kapetanakis E and Goumenaki E. 2022. Future shifts in the phenology of table grapes on Crete under a warming climate. Agricultural and Forest Meteorology, 318: 108915. [DOI: 10.1016/j.agrformet.2022.108915http://dx.doi.org/10.1016/j.agrformet.2022.108915]
Huete A, Didan K, Miura T, Rodriguez E P, Gao X and Ferreira L G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1): 195-213. [DOI: 10.1016/S0034-4257(02)00096-2http://dx.doi.org/10.1016/S0034-4257(02)00096-2]
Huete A R, Didan K, Shimabukuro Y E, Ratana P, Saleska S R, Hutyra L R, Yang W, Nemani R R and Myneni R. 2006. Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters, 33(6). [DOI: 10.1029/2005GL025583http://dx.doi.org/10.1029/2005GL025583]
Ishtiaque A, Myint S W and Wang C. 2016. Examining the ecosystem health and sustainability of the world's largest mangrove forest using multi-temporal MODIS products. Science of The Total Environment, 569-570: 1241-54. [DOI: 10.1016/j.scitotenv.2016.06.200http://dx.doi.org/10.1016/j.scitotenv.2016.06.200]
Jarihani A, McVicar T, Van Niel T, Emelyanova I, Callow J and Johansen K. 2014. Blending Landsat and MODIS data to generate multispectral indices: a comparison of “index-then-blend” and “blend-then-index” approaches. Remote Sensing, 6(10): 9213-38. [DOI: 10.3390/rs6109213http://dx.doi.org/10.3390/rs6109213]
Ji Z, Pan Y, Zhu X, Zhang D and Wang J. 2022. A generalized model to predict large-scale crop yields integrating satellite-based vegetation index time series and phenology metrics. Ecological Indicators, 137: 108759. [DOI: 10.1016/j.ecolind.2022.108759http://dx.doi.org/10.1016/j.ecolind.2022.108759]
Jiang Y, Li B, Yuan Y, Sun Q, Zhang T, Liu Y, Li Y and Li R. 2021. Divergent shifts in flowering phenology of herbaceous plants on the warming Qinghai–Tibetan plateau. Agricultural and Forest Meteorology, 307: 108502. [DOI: 10.1016/j.agrformet.2021.108502http://dx.doi.org/10.1016/j.agrformet.2021.108502]
Johnston C A. 2014. Agricultural expansion: land use shell game in the US Northern Plains. Landscape Ecology, 29(1): 81–95. [DOI: 10.1007/s10980-013-9947-0http://dx.doi.org/10.1007/s10980-013-9947-0]
Jönsson P and Eklundh L J C G. 2004. TIMESAT - a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30(8): 833-45. [DOI: 10.1016/j.cageo.2004.05.006http://dx.doi.org/10.1016/j.cageo.2004.05.006]
Ju J and Roy D P. 2008. The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally. Remote Sensing of Environment, 112(3): 1196-211. [DOI: 10.1016/j.rse.2007.08.011http://dx.doi.org/10.1016/j.rse.2007.08.011]
Khare S, Deslauriers A, Morin H, Latifi H and Rossi S. 2021. Comparing time-lapse PhenoCams with satellite observations across the boreal forest of Quebec, Canada. Remote Sensing, 14(1): 100. [DOI: 10.3390/rs14010100http://dx.doi.org/10.3390/rs14010100]
Knauer K, Gessner U, Fensholt R and Kuenzer C. 2016. An ESTARFM fusion framework for the generation of large-scale time series in cloud-prone and heterogeneous landscapes. Remote Sensing, 8(5). [DOI: 10.3390/rs8050425http://dx.doi.org/10.3390/rs8050425]
Koch J, Demirel M C and Stisen S. 2018. The SPAtial EFficiency metric (SPAEF): multiple-component evaluation of spatial patterns for optimization of hydrological models. Geoscientific Model Development, 11: 1873-1886. [DOI: 10.5194/gmd-11-1873-2018http://dx.doi.org/10.5194/gmd-11-1873-2018]
Kross A, McNairn H, Lapen D, Sunohara M and Champagne C. 2015. Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34: 235-248. [DOI: 10.1016/j.jag.2014.08.002http://dx.doi.org/10.1016/j.jag.2014.08.002]
Lake L, Chauhan Y S, Ojeda J J, Cossani C M, Thomas D, Hayman P T and Sadras V O. 2021. Modelling phenology to probe for trade-offs between frost and heat risk in lentil and faba bean. European Journal of Agronomy, 122: 126154. [DOI: 10.1016/j.eja.2020.126154http://dx.doi.org/10.1016/j.eja.2020.126154]
Liu H, Xiong W, Pequeño D N L, Hernández-Ochoa I M, Krupnik T J, Burgueño J and Xu Y. 2022. Exploring the uncertainty in projected wheat phenology, growth and yield under climate change in China. Agricultural and Forest Meteorology, 326: 109187. [DOI: 10.1016/j.agrformet.2022.109187http://dx.doi.org/10.1016/j.agrformet.2022.109187]
Luo Y, Guanb K and Pen J. 2018. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product. Remote Sensing of Environment, 214: 87-99. [DOI: 10.1016/j.rse.2018.04.042http://dx.doi.org/10.1016/j.rse.2018.04.042]
Massey J H, Walker T W, Anders M M, Smith M C and Avila L A. 2014. Farmer adaptation of intermittent flooding using multiple-inlet rice irrigation in Mississippi. Agricultural Water Management, 146: 297-304. [DOI: 10.1016/j.agwat.2014.08.023http://dx.doi.org/10.1016/j.agwat.2014.08.023]
Morris L R, Monaco T A and Sheley R L. 2011. Land-use legacies and vegetation recovery 90 years after cultivation in great basin sagebrush ecosystems. Rangeland Ecology & Management, 64(5): 488-497. [DOI: 10.2111/REM-D-10-00147.1http://dx.doi.org/10.2111/REM-D-10-00147.1]
Nelson P W. 2010. The terrestrial natural communities of Missouri. Jefferson City, Missouri: Missouri Natural Areas Committee
Nietupski T C, Kennedy R E, Temesgen H and Kerns B K. 2021. Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape. International Journal of Applied Earth Observation and Geoinformation, 99: 102323. [DOI: 10.1016/j.jag.2021.102323http://dx.doi.org/10.1016/j.jag.2021.102323]
Peng D, Zhang X, Zhang B, Liu L, Liu X, Huete A R, Huang W, Wang S, Luo S, Zhang X and Zhang H. 2017. Scaling effects on spring phenology detections from MODIS data at multiple spatial resolutions over the contiguous United States. Isprs Journal of Photogrammetry and Remote Sensing, 132: 185-98. [DOI: 10.1016/j.isprsjprs.2017.09.002http://dx.doi.org/10.1016/j.isprsjprs.2017.09.002]
Polgar C A and Primack R B. 2011. Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytologist, 191: 926-941. [DOI: 10.1111/j.1469-8137.2011.03803.xhttp://dx.doi.org/10.1111/j.1469-8137.2011.03803.x]
Rao Y, Zhu X, Chen J and Wang J. 2015. An improved method for producing high spatial-resolution NDVI time series datasets with multi-temporal MODIS NDVI data and Landsat TM/ETM plus images. Remote Sensing, 7(6): 7865-91. [DOI: 10.3390/rs70607865http://dx.doi.org/10.3390/rs70607865]
Richardson A D, Hufkens K, Milliman T and Frolking S. 2018. Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing. Scientific Reports, 8(1): 5679. [DOI: 10.1038/s41598-018-23804-6http://dx.doi.org/10.1038/s41598-018-23804-6]
Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O and Toomey M. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169: 156-73. [DOI: 10.1016/j.agrformet.2012.09.012http://dx.doi.org/10.1016/j.agrformet.2012.09.012]
Ricketts T H, Dinerstein E, Olson D M, Eichbaum W, Loucks C J, DellaSala D A, Kavanagh K, Hedao P, Hurley P, and Carney K. 1999. Terrestrial ecoregions of North America: a conservation assessment. Washington, D.C: Island Press.
Savitzky A and Golay M J E. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8): 1627-39. [DOI: 10.1021/ac60214a047http://dx.doi.org/10.1021/ac60214a047]
Seyednasrollah B, Young A M, Hufkens K, Milliman T, Friedl M A, Frolking S and Richardson A D. 2019. Tracking vegetation phenology across diverse biomes using Version 2.0 of the PhenoCam Dataset. Scientific Data, 6(1): 222. [DOI: 10.1038/s41597-019-0229-9http://dx.doi.org/10.1038/s41597-019-0229-9]
Shrestha D S, Staab B D and Duffield J A. 2019. Biofuel impact on food prices index and land use change. Biomass and Bioenergy, 124: 43–53. [DOI: 10.1016/j.biombioe.2019.03.003http://dx.doi.org/10.1016/j.biombioe.2019.03.003]
Sisheber B, Marshall M, Mengistu D and Nelson A. 2022. Tracking crop phenology in a highly dynamic landscape with knowledge-based Landsat–MODIS data fusion. International Journal of Applied Earth Observation and Geoinformation, 106: 102670. [DOI: 10.1016/j.jag.2021.102670http://dx.doi.org/10.1016/j.jag.2021.102670]
Stillinger T, Roberts D A, Collar N M and Dozier J. 2019. Cloud masking for Landsat 8 and MODIS Terra over snow-covered terrain: error analysis and spectral similarity between snow and cloud. Water Resources Research, 55(7): 6169-84. [DOI: 10.1029/2019WR024932http://dx.doi.org/10.1029/2019WR024932]
Stucky B J, Guralnick R, Deck J, Denny E G, Bolmgren K and Walls R. 2018. The plant phenology ontology: a new informatics resource for large-scale integration of plant phenology data. Frontiers in Plant Science, 9: 517. [DOI: 10.3389/fpls.2018.00517http://dx.doi.org/10.3389/fpls.2018.00517]
Sun L, Gao F, Xie D, Anderson M, Chen R, Yang Y, Yang Y and Chen Z. 2021. Reconstructing daily 30 m NDVI over complex agricultural landscapes using a crop reference curve approach. Remote Sensing of Environment, 253. [DOI: 10.1016/j.rse.2020.112156http://dx.doi.org/10.1016/j.rse.2020.112156]
Tian J, Zhu X, Wu J, Shen M and Chen J. 2020. Coarse-resolution satellite images overestimate urbanization effects on vegetation spring phenology. Remote Sensing, 12(1). [DOI: 10.3390/rs12010117http://dx.doi.org/10.3390/rs12010117]
Venancio L P, Mantovani E C, Amaral C H do, Neale C M U, Gonçalves I Z, Filgueiras R and Eugenio F C. 2020. Potential of using spectral vegetation indices for corn green biomass estimation based on their relationship with the photosynthetic vegetation sub-pixel fraction. Agricultural Water Management, 236: 106155. [DOI: 10.1016/j.agwat.2020.106155http://dx.doi.org/10.1016/j.agwat.2020.106155]
Walker J J, de Beurs K M and Wynne R H. 2014. Dryland vegetation phenology across an elevation gradient in Arizona, USA, investigated with fused MODIS and Landsat data. Remote Sensing of Environment, 144: 85-97. [DOI: 10.1016/j.rse.2014.01.007http://dx.doi.org/10.1016/j.rse.2014.01.007]
Walker J J, de Beurs K M, Wynne R H and Gao F. 2012. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sensing of Environment, 117: 381-93. [DOI: 10.1016/j.rse.2011.10.014http://dx.doi.org/10.1016/j.rse.2011.10.014]
Wang X, Du P, Chen D, Lin C, Zheng H and Guo S. 2020. Characterizing urbanization-induced land surface phenology change from time-series remotely sensed images at fine spatio-temporal scale: A case study in Nanjing, China (2001–2018). Journal of Cleaner Production, 274: 122487. [DOI: 10.1016/j.jclepro.2020.122487http://dx.doi.org/10.1016/j.jclepro.2020.122487]
Wang M Y, Luo Y, Zhang Z Y, Xie Q Y, Wu X D and Ma X L. 2022. Recent advances in remote sensing of vegetation phenology:Retrieval algorithm and validation strategy. National Remote Sensing Bulletin, 26(3): 431-455.
王敏钰, 罗毅, 张正阳, 谢巧云, 吴小丹, 马轩龙. 2022. 植被物候参数遥感提取与验证方法研究进展. 遥感学报, 26(3): 431-455 [DOI: 10.11834/jrs.20211601http://dx.doi.org/10.11834/jrs.20211601]
Yin G, Verger A, Descals A, Filella I and Peñuelas J. 2022. A broadband green-red vegetation index for monitoring gross primary production phenology. Journal of Remote Sensing, 2022. [DOI: 10.34133/2022/9764982http://dx.doi.org/10.34133/2022/9764982]
Zeng Z, Wu W, Ge Q, Li Z, Wang X, Zhou Y, Zhang Z, Li Y, Huang H, Liu G and Peñuelas J. 2021. Legacy effects of spring phenology on vegetation growth under preseason meteorological drought in the Northern Hemisphere. Agricultural and Forest Meteorology, 310: 108630. [DOI: 10.1016/j.agrformet.2021.108630http://dx.doi.org/10.1016/j.agrformet.2021.108630]
Zhang X, Wang J, Gao F, Liu Y, Schaaf C, Friedl M, Yu Y, Jayavelu S, Gray J, Liu L, Yan D and Henebry G M. 2017. Exploration of scaling effects on coarse resolution land surface phenology. Remote Sensing of Environment, 190: 318-30. [DOI: 10.1016/j.rse.2017.01.001http://dx.doi.org/10.1016/j.rse.2017.01.001]
Zhu X, Chen J, Gao F, Chen X and Masek J G. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114(11): 2610-23. [DOI: 10.1016/j.rse.2010.05.032http://dx.doi.org/10.1016/j.rse.2010.05.032]
相关文章
相关作者
相关机构