基于多源数据的形貌分析在国际月球科研站建设中的应用研究
Application of topography analysis based on multi-source data in the construction of the International Lunar Research Station
- 2023年 页码:1-21
网络出版日期: 2023-10-20
DOI: 10.11834/jrs.20233011
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2023-10-20 ,
扫 描 看 全 文
杜省,康志忠,胡腾,肖萌,李默.XXXX.基于多源数据的形貌分析在国际月球科研站建设中的应用研究.遥感学报,XX(XX): 1-21
DU Xing,KANG Zhizhong,HU Teng,XIAO Meng,LI Mo. XXXX. Application of topography analysis based on multi-source data in the construction of the International Lunar Research Station. National Remote Sensing Bulletin, XX(XX):1-21
国际月球科研站(International Lunar Research Station,简称ILRS)的建立是我国顺应当前形势的重要太空战略部署。为研究基于多源数据的形貌分析在ILRS建设过程中的应用,将“ILRS计划”分为选址和科考阶段。分析ILRS选址阶段需考虑的约束条件,简述正射影像、月表地形、微波辐射计、多/高光谱成像、测月雷达、伽马射线等多源数据在选址阶段的应用,利用嫦娥二号DOM、DEM、LRO Diviner辐射计、LOLA激光高度计以及地质制图等多源数据对月球南极地形特征、温度条件、光照条件、对地能见度和地质特征进行分析,提出在ILRS选址阶段应考虑的诸多因素和适合着陆选址的区域特点,并以Amundsen区域为例,选择了3个候选着陆点。以Shackleton、Shoemaker、de Gerlache和Amundsen撞击坑为代表,基于多源数据分析结果为ILRS科考阶段巡视路线的规划、水冰探测的分析、观测基站的设立提供参考。研究表明基于多源数据的形貌分析结果对ILRS的选址和科考任务都有重要参考价值。
The establishment of the International Lunar Research Station (ILRS) is an important space strategic deployment for China that conforms to the current situation. The moon is an important part of deep space scientific research that cannot be ignored. Exploration of the Moon marks a country's space capability. Cooperate in lunar exploration and utilization
and build a lunar research station
so as to better improve human welfare and interests. China's lunar exploration is moving from independence to win-win cooperation. Chang'e-4 has created a new situation for the first time in which China plays the leading role in promoting multinational cooperation in joint Chinese and foreign exploration. In 2021
based on the existing Exploration of the Moon plans of China and Russia
China National Space Administration and Roscosmos jointly launched the ILRS project. In order to study the application of topography analysis based on multi-source data in the construction of ILRS
the "ILRS plan" is divided into site selection and scientific research stages. Analyze the constraint conditions to be considered in the site selection stage of ILRS
briefly describe the application of orthophoto
lunar surface topography
multi/hyperspectral image
lunar radar
gamma rays and other multi-source data in the site selection stage
and use the multi-source data of Chang'e-2 DOM
DEM
LRO diver radiometer
LOLA laser altimeter and geological mapping to analyze the topographic characteristics
temperature conditions
lighting conditions
the earth visibility and geological characteristics. Many factors that should be considered in the ILRS site selection stage and the regional characteristics suitable for landing site selection are proposed. In order to achieve the scientific goals of ILRS
the landing area should have conditions such as gentle terrain fluctuations
less changes
suitable lighting and temperature
and convenient water ice detection. Taking the Amundsen area as an example
three candidate landing sites are selected. Based on the best Decision model and multi criteria Decision model
qualitative and quantitative decision analysis is carried out for the three candidate points proposed in this paper. Taking Shackleton
Shoemaker
de Gerlache and Amundsen impact craters as examples
based on the analysis results of multi-source data
it provides a reference for the planning of inspection route
the analysis of water ice detection and the establishment of observation base stations in the ILRS scientific research phase. The shape of the Impact crater in the study area affects the planning of the inspection route. When setting the inspection route
the area with complex and changeable shape of the Impact crater should be avoided. The permanent shadow area in the large Impact crater should be emphatically analyzed to ensure the successful realization of water ice detection and reduce the risk and resource waste caused by misjudgment. Areas with higher visibility to the sky and ground are more suitable for establishing observation base stations to ensure the continuous and stable progress of observation tasks. The research shows that the topography analysis results based on multi-source data have important reference value for ILRS location and scientific research tasks.
国际月球科研站多源数据形貌分析选址科考
International Lunar Research Stationmulti-source datamorphology analysissite selectionscientific research
A.B. Sanin, I.G. Mitrofanov, M.L. Litvak, B.N. Bakhtin, J.G. Bodnarik, W.V. Boynton, G. Chin, L.G. Evans, K. Harshman, F. Fedosov, D.V. Golovin, A.S. Kozyrev, T.A. Livengood, A.V. Malakhov, T.P. McClanahan, M.I. Mokrousov, R.D. Starr, R.Z. Sagdeev, V.I. Tret'yakov, A.A. Vostrukhin, Hydrogen distribution in the lunar polar regions, Icarus, Volume 283, 2017, Pages 20-30, ISSN 0019-1035.
Dong J and Lu Z.2021. Guide to partners of international lunar research station (Overview) [J]. International space, (08): 17-20.
董佼,陆征.2021.《国际月球科研站合作伙伴指南》(概览)[J].国际太空,(08):17-20.
Epp C D, Robertson E A and Brady T. 2008. Autonomous landing and hazard a-voidance technology. IEEE Aerospace Conference.
Flahaut J., Blanchette-Guertin J.-F., Jilly C., Sharma P., Souchon A., Westrenen W. and Kring D.A..2012. Identification and characterization of science-rich landing sites for lunar lander missions using integrated remote sensing observations, Advances in Space Research,Volume 50, Issue 12,2012,Pages 1647-1665,ISSN 0273-1177.
Flahaut J., Carpenter J., Williams J.-P., Anand M., Crawford I.A., Westrenen W., Füri E., Xiao L and Zhao S. 2020. Regions of interest (ROI) for future exploration missions to the lunar South Pole, Planetary and Space Science, Volume 180, 104750, ISSN 0032-0633.
Fortezzo C.M., Spudis P. D. and Harrel S.L.2020. Release of the Digital Unified Global Geologic Map of the Moon At 1:5,000,000-Scale. Paper presented at the 51st Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston,TX.
He Y. 2012. Research on lunar topography mapping technology based on lunar surface CCD image and laser altimetry data [D] PLA Information Engineering University.
何钰.2012.基于月面CCD影像和激光测高数据的月球形貌测绘技术研究[D]. 解放军信息工程大学.
Jia Y Z, Zou Y L.2016. Analysis of moon base site selection requirements for moon based earth observation [J]. Spacecraft engineering,25 (06): 116-121.
贾瑛卓,邹永廖.2016.月基对地观测对月球基地选址需求分析[J].航天器工程,25(06):116-121.
Jolliff B L., Wieczorek M.A., Shearer C.K. and Neal C.R..2006. New Views of the Moon [M]. NY: Mineralogical Society of America.172- 208.
Kaschubek D., Killian M. and Grill L.. 2021. System analysis of a Moon base at the south pole: Considering landing sites, ECLSS and ISRU, Acta Astronautica, Volume 186,Pages 33-49,ISSN 0094-5765.
Koebel D , Bonerba M , Behrenwaldt D and Wieser M, Borowy C. 2012. Analysis of landing site attributes for future missions targeting the rim of the lunar South Pole Aitken basin[J]. Acta astronautica, 80(NOV.-DEC.):p.197-215.
Kring D A and Durda D D. 2012. A global lunar landing site study to provide the scientific context for exploration of the Moon. LPI Contribution No.1694.LPI-JSC Center for Lunar Science and Exploration.
Li F, Wu B, Yang M, Zhao Y, Zhang H, Wu X Y, Xu Y Q and Ye Q.2019. Topographic and occlusion analysis of the Chang’E-4 landing site in the Von Kármán crater[J].Sci Sin Tech,49:1385-1396.
Li Y Q, Liu J Z, Ouyang Z Y, et al. 2007 Distribution characteristics of rock types on the lunar surface: inversion based on data detected by the Lunar Prospector (LP) gamma ray spectrometer [J]. Acta Petrologica Sinica, (05): 1169-1174
李泳泉,刘建忠,欧阳自远等. 2007.月球表面岩石类型的分布特征:基于Lunar Prospector (LP)伽马射线谱仪探测数据的反演[J].岩石学报, (05):1169-1174.
Lin R H, Wang Q and Yang R H. 2022. Enlightenment of international major engineering cooperation mechanism on the construction of China's international lunar scientific research station [J]. International space, (01): 38-43.
林仁红,王倩,杨瑞洪.2022.国际重大工程合作机制对我国国际月球科研站建设的启示[J].国际太空,(01):38-43.
Liu J Z, Hu C B, Pang F C, Kang Y, Li H, Ma J N and Lu X.2020. Research on the development strategy of deep space exploration [J]. Science of China: Science of technology,50 (09): 1126-1139.
刘继忠,胡朝斌,庞涪川,康焱,李晖,马继楠,陆希.2020.深空探测发展战略研究[J].中国科学:技术科学,50(09):1126-1139.
Ma X R.2021. China and Russia join hands to build a lunar scientific research station [J]. China's military to civilian, (05): 11-12.
马晓荣.2021.中俄携手建设月球科研站[J].中国军转民,(05):11-12.
Mazarico E. M., Neumann G. A., Smith D. E., Zuber M. T. and Torrence M. H.. 2011. Illumination Conditions of the Lunar Polar Regions Using LOLA Topography. Icarus 211 1066.
Meng Z G, Chen S B, Liu C, Du X J and Lv H.2008. Simulation of passive microwave radiation transmission in heterogeneous lunar soil media [J]. Journal of Jilin University: Earth Science Edition ,38 (6): 1070-1074.
孟治国,陈圣波,刘财,杜晓娟,吕航.2008.非均匀月壤介质的被动微波辐射传输模拟[J].吉林大学学报:地球科学版,38(6):1070-1074.
Oberbeck V R and Quaide W L. 1968. Genetic implication of lunar regolith thickness variations. Icarus,9(1-3):446-465.
Ouyang Z Y.2005.Lunar science Conspectus[M]. Beijing: China Astronautic Publishing House,25-275.
欧阳自远. 2005.月球科学概论[M].北京: 中国宇航出版社,25-275.
Pei Z Y, Kang Y, Ma J N, Zhao C and Ma X S.2022. Research on Collaborative demonstration method of international lunar scientific research station based on model [J/OL]. Acta Aeronautica Sinica: 1-14.
裴照宇,康焱,马继楠,赵晨,马晓珊.2022.基于模型的国际月球科研站协同论证方法研究[J/OL].航空学报:1-14.
Pei Z Y, Liu J Z, Wang Q, Kang Y, Liao Y L, Zhang Y, Zhang Y H, He H Y, Wang Q and Yang R H.2020.Progress of lunar exploration and international lunar research station [J]. Science Bulletin, 65 (24): 2577-2586.
裴照宇,刘继忠,王倩,康焱,邹永廖,张熇,张玉花,贺怀宇,王琼,杨瑞洪.2020.月球探测进展与国际月球科研站[J].科学通报,65(24):2577-2586.
Reedy R.C..1978. Planetary gammaray spectroscopy [C]//Merrill R B. Proc.Lunar Planet.Sci. Conf. 9th.New York:Pergamon Press,2961-2984.
Shevchenko V. 1992. The choice of the location of the lunar base[R].NASA-CP-3166,Houston: NASA, ( 1 ) : 155-160.
Speyerer, E.J, and M.S. Robinson. 2013. Persistently Illuminated Regions at the Lunar Poles: Ideal Sites For Future Exploration, Icarus,222,122136.
Wang X, Chen J P, Xu Y B, Zheng Y C, Yan B K and Wu J Z.2012. Inversion of TiO2 and MgO content in the Hongwan area of the moon based on Chang'e data [J]. Geoscience front,19 (6): 28-36.
王翔,陈建平,许延波,郑永春,闫柏琨,吴昀昭.2012.基于嫦娥数据的月球虹湾区域TiO2、MgO含量反演[J].地学前缘,19(6):28-36.
Wilhelms D E, Oberbeck V R and Aggarwal H R. 1978. Size-frequency distributions of primary and secondary lunar impact craters. In: Lunar and Planetary Science Conference. March 13-17.
Williams J.-P., B. T. Greenhagen, D. A. Paige, N. Schorghofer, E. Sefton-Nash, P. O. Hayne, P. G. Lucey, M. A. Siegler, and K.-Michael Aye. 2019. Seasonal polar temperatures on the Moon. Journal of Geophysical Research: Planets, 124, 2505–2521.
Wilson J. T., Lawrence D. J.,Peplowski P. N., Cahill J. T. S., Eke V. R., Massey R. J., & Teodoro L. F. A. 2018. Image reconstruction techniques in neutron and gamma ray spectroscopy: Improving Lunar Prospector data. Journal of Geophysical Research: Planets, 123, 1804–1822.XiaoL, QiaoL, XiaoZY, HuangQ, HeQ, ZhaoJN, Q and HuangJXueZ.2016. Main scientific issues worthy of attention in lunar landing exploration and suggestions on site selection of landing area [J] Chinese Science: Physics and mechanics astronomy, 46 (02): 9-30.
肖龙,乔乐,肖智勇,黄倩,何琦,赵健楠,薛竹青,黄俊.2016.月球着陆探测值得关注的主要科学问题及着陆区选址建议[J].中国科学:物理学 力学 天文学,46(02):9-30.
Zhang Y, Du Y, Li F, Zhang H, Ma J N, Sheng L Y and Wu K.2020. Site selection proposal for lunar Antarctic exploration and landing project [J]. Journal of deep space exploration (Chinese and English),7 (03): 232240.
张熇,杜宇,李飞,张弘,马继楠,盛丽艳,吴克.2020.月球南极探测着陆工程选址建议[J].深空探测学报(中英文), 7(03):232-240.
相关作者
相关机构