基于无人机数据的森林冠层体密度和冠层基高估算
Estimating Canopy Bulk Density and Canopy Base Height using UAV LiDAR and Multispectral Images
- 2023年 页码:1-16
网络出版日期: 2023-10-24
DOI: 10.11834/jrs.20233094
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2023-10-24 ,
扫 描 看 全 文
孙浩,郭笑怡,张洪岩,赵建军.XXXX.基于无人机数据的森林冠层体密度和冠层基高估算.遥感学报,XX(XX): 1-16
SUN Hao,GUO Xiaoyi,ZHANG Hongyan,ZHAO Jianjun. XXXX. Estimating Canopy Bulk Density and Canopy Base Height using UAV LiDAR and Multispectral Images. National Remote Sensing Bulletin, XX(XX):1-16
森林冠层体密度(Canopy Bulk Density,CBD)和冠层基高(Canopy Base Height,CBH)是许多火行为模型的关键输入参数。然而,在中国很少有研究关注这些参数的估算以及在区域的空间分布情况。无人机技术的发展为精细尺度估算CBD和CBH的空间分布提供了机遇。本研究首先利用野外调查数据计算样地的CBD和CBH;而后,利用无人机LiDAR点云和多光谱影像,构建基于面状区域的最优子集和随机森林估算模型,并对估算结果进行评价;最后,绘制研究区的CBD和CBH空间分布图。研究结果表明:采用相同数据源和模型时,估算CBH的R
2
总是高于CBD。CBD最优估算方法为融合LiDAR和多光谱数据的随机森林模型,R
2
为0.5142,RMSE为0.0773 kg/m
3
,rRMSE为40.73%。CBH的最优估算方法为仅使用LiDAR数据的随机森林模型,R
2
为0.6477,RMSE为1.6245 m,rRMSE为31.17%。使用单一数据源时,LiDAR估算精度明显高于多光谱数据。融合两种数据源不一定提升CBD和CBH的估算精度。本研究中构建的最优子集模型需要3-6个特征变量,随机森林模型则需要输入10-52个特征变量。仅使用多光谱影像估算CBD和CBH时,最优子集回归估算精度更好,但是空间预测结果易受地表覆盖类型的影响。本研究能够为森林冠层可燃物参数估算提供方法参考,同时也可以为林火行为预测模型提供精细尺度的输入数据。
Wildfire behavior modeling programs require spatial layers of canopy bulk density (CBD) and canopy base height (CBH) to predict fire spread. However
the both canopy fuel metrics have been investigated by few studies in China. Generally
inaccurate spatial estimates may result from the utilization of traditional field-based estimates
which assume averages across spatial extents. Recently
unmanned aerial vehicles (UAV) have emerged as valuable tools
providing LiDAR point clouds and multispectral images to estimate CBD and CBH at fine resolution. The main objective of the study is to develop an area-based approach to estimate CBD and CBH and evaluate the accuracy of various UAV datasets at a 10 m resolution at local scale in China. In this study
we set up a case study area in Jiaohe City
Jilin Province
which is predominantly covered by coniferous forests in low mountains and hills. Field data
species
crown base height
total tree height
and diameter at breast height
from 106 circular plots
which provided modeling and validation datasets. The Fire and Fuels Extension of Forest Vegetation Simulator was used to calculate CBD and CBH for each plot. The best subset regression and random forest models were employed to establish relationships between 106 field data collected and predictive variables derived from UAV LiDAR and multispectral imagery. Due to the nonlinearity of the data
we used the Box-Cox procedure to determine that a 0.5 power transformation was appropriate for the best subset regression. Our results indicate that the R
2
value of CBD is always lower than that of CBH using the same models and input dataset. The fusion of LiDAR with multispectral imagery presents the best accurate estimation of CBD using random forest (R
2
=0.5142
RMSE=0.0773 kg/m
3
rRMSE=40.73%) and LiDAR along exhibits the highest accurate estimation for CBH (R
2
=0.6477
RMSE=1.6245 m
rRMSE=31.17%). For both the best subset regression and random forest models
LiDAR point clouds alone had higher accuracy in estimating CBD and CBH compared to multispectral imagery. The best subset regression models exhibited greater R
2
than random forest models for multispectral imagery alone. It showed that the estimated CBD and CBH values were higher using multispectral imagery than LiDAR at margin of the study area because of crop land. Fusing LiDAR with multispectral imagery uncertainly improved estimation accuracy over LiDAR and multispectral imagery alone for various models. Therefore
we recommend using the random forest of fusing LiDAR and multispectral imagery and LiDAR alone for mapping CBD and CBH in the study area due to the lowest RMSE
respectively. The best subset regression model involved 3 to 6 variables
while the random forest models encompassed 10 to 52 predictive variables. Among the original LiDAR predictor variables
height features exhibited the greatest importance
while structure features showed considerable importance. The selected multispectral imagery features of both models presented diversity for various canopy flue metrics. This study provides clear evidence that UVA LiDAR and multispectral imagery can be used to derive fine-resolution CBD and CBH
which are crucial for fire behavior modeling at a landscape scale
as well as and forest management activities and decision-making.
LiDAR多光谱数据冠层体密度冠层基高最优子集模型随机森林模型
LiDARmultispectral imagescanopy bulk densitycanopy base heightthe best subset regressionrandom forest
Adams M A, and Shen Z. 2015. Introduction to the Characteristics, Impacts and Management of Forest Fire in China. Forest Ecology and Management, 356: 1 [DOI: 10.1016/j.foreco.2015.09.019http://dx.doi.org/10.1016/j.foreco.2015.09.019]
Andersen H, McGaughey R J, and Reutebuch S E. 2005. Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 94 (4): 441-449 [DOI: 10.1016/j.rse.2004.10.013http://dx.doi.org/10.1016/j.rse.2004.10.013]
Arellano-Pérez, S, Castedo-Dorado F, López-Sánchez C A, González-Ferreiro E, Yang Z, Díaz-Varela R A, Álvarez-González J G, Vega J A, and Ruiz-González A D. 2018. Potential of Sentinel-2A data to model surface and canopy fuel characteristics in relation to crown fire hazard. Remote Sensing, 10 (10): 1645. [DOI: 10.3390/rs10101645http://dx.doi.org/10.3390/rs10101645]
Bright B C, Hudak A T, Meddens A J H, Hawbaker T J, Briggs J S, and Kennedy R E. 2017. Prediction of forest canopy and surface fuels from Lidar and satellite time series data in a Bark Beetle-Affected forest. Forests, 8 (9): 322. [DOI: 10.3390/f8090322http://dx.doi.org/10.3390/f8090322]
Burgan, R E, and Richard C R. 1984. BEHAVE: Fire Behavior Prediction and Fuel Modeling System-FUEL Subsystem. https://www.fs.usda.gov/research/treesearch/29616. (2022-09-23)https://www.fs.usda.gov/research/treesearch/29616.(2022-09-23) [DOI: 10.2737/INT-GTR-167http://dx.doi.org/10.2737/INT-GTR-167]
Chamberlain C P, Meador A J S, and Thode A E. 2021. Airborne Lidar provides reliable estimates of canopy base height and canopy bulk density in Southwestern Ponderosa Pine Forests. Forest Ecology and Management, 481: 118695. [DOI: 10.1016/j.foreco.2020.118695http://dx.doi.org/10.1016/j.foreco.2020.118695]
Chang Y, Zhu Z, Bu R, Li Y, and Hu Y. 2015. Environmental Controls on the Characteristics of Mean Number of Forest Fires and Mean Forest Area Burned (1987–2007) in China. Forest Ecology and Management, 356: 13-21 [DOI: 10.1016/j.foreco.2015.07.012http://dx.doi.org/10.1016/j.foreco.2015.07.012]
Elizabeth D R, and Crookston N L. 2003. The fire and fuels extension to the forest vegetation simulator. https://www.fs.usda.gov/research/treesearch/5593 (2022-09-20) [DOI: 10.2737/RMRS-GTR-116http://dx.doi.org/10.2737/RMRS-GTR-116]
Engelstad P S, Falkowski M, Wolter P, Poznanovic A, and Johnson P. 2019. Estimating canopy fuel attributes from low-density LiDAR. Fire, 2 (3): 38. [DOI: 10.3390/fire2030038http://dx.doi.org/10.3390/fire2030038]
Erdody T L, and Moskal L M. 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment, 114 (4): 725-737. [DOI: 10.1016/j.rse.2009.11.002http://dx.doi.org/10.1016/j.rse.2009.11.002]
Finney M A. 2004. FARSITE: Fire area simulator-model development and evaluation. https://www.fs.usda.gov/research/treesearch/4617 (2022-09-01) [DOI: 10.2737/RMRS-RP-4http://dx.doi.org/10.2737/RMRS-RP-4]
Finney M A. 2006. An Overview of FlamMap fire modeling capabilities. https://www.fs.usda.gov/research/treesearch/25948 (2022-09-10)https://www.fs.usda.gov/research/treesearch/25948(2022-09-10)
González-Ferreiro E, Diéguez-Aranda U, Crecente-Campo F, Barreiro-Fernández L, Miranda D, and Castedo-Dorado F. 2014. Modelling canopy fuel variables for Pinus Radiata D. Don in NW Spain with low-density LiDAR data. International Journal of Wildland Fire, 23 (3): 350-362. [DOI: 10.1071/WF13054http://dx.doi.org/10.1071/WF13054]
Jarron L R, Coops N C, Mackenzie W H, Tompalski P, and Dykstra P. 2020. Detection of sub-canopy forest structure using airborne LiDAR. Remote Sensing of Environment, 244: 111770. [DOI: 10.1016/j.rse.2020.111770http://dx.doi.org/10.1016/j.rse.2020.111770]
Li D R, and Li M. 2014. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomatics and Information Science of Wuhan University, 39 (5): 505-513+540
李德仁, 李明. 2014. 无人机遥感系统的研究进展与应用前景. 武汉大学学报(信息科学版) 39 (5): 505-513+540 [DOI:10.13203/j.whugis20140045http://dx.doi.org/10.13203/j.whugis20140045]
Li M, Liu Q W, Feng Y M, and Li Z Y. 2022. Analysis of estimation models of plantation stand heights using UAV LiDAR. National Remote Sensing Bulletin, 26(12): 2665-2678
李梅, 刘清旺, 冯益明, 李增元. 2022. 无人机激光雷达人工林林分高估测模型分析. 遥感学报, 26(12): 2665-2678 [DOI: 10.11834/jrs.20210246http://dx.doi.org/10.11834/jrs.20210246]
Li X T, Liu Q, Qin X L, Liu S C, and Wang C Y. 2022. Method for national fuel types classification based on multi-source data. National Remote Sensing Bulletin, 26(3): 480-492
李晓彤, 刘倩, 覃先林, 刘树超, 王崇阳. 2022. 基于多源数据的全国可燃物类型划分方法. 遥感学报 26 (3): 480-492 [DOI:10.11834/jrs.20219208http://dx.doi.org/10.11834/jrs.20219208]
Li Z Y, Liu Q W, and Pang Y. 2016. Review on forest parameters inversion using LiDAR. Journal of Remote Sensing, 20(5): 1138-1150
李增元, 刘清旺, 庞勇. 2016. 激光雷达森林参数反演研究进展. 遥感学报, 20 (5): 1138-1150 [DOI:10.11834/jrs.20165130http://dx.doi.org/10.11834/jrs.20165130]
Lim K, Treitz P, Wulder M, St-Onge B, and Flood M. 2003. LiDAR Remote Sensing of Forest Structure. Progress in Physical Geography: Earth and Environment, 27 (1): 88-106. [DOI: 10.1191/0309133303pp360rahttp://dx.doi.org/10.1191/0309133303pp360ra]
Luo, L, Zhai Q, Su Y, Ma Q, Kelly M, and Guo Q. 2018. Simple method for direct crown base height estimation of individual conifer trees using airborne LiDAR data. Optics Express, 26 (10): A562-A578. [DOI: 10.1364/OE.26.00A562http://dx.doi.org/10.1364/OE.26.00A562]
Lv B R, Peng L, Chen J H, Chen R N, and Ge X T. 2021. Analysis of public opinion information pulsation of forest fire on social media. Geomatics Word, 28(3): 61-66
吕蓓茹, 彭玲, 陈嘉辉, 陈若男, 葛星彤. 2021. 基于社交媒体的森林火灾舆情信息脉动分析. 地理信息世界, 28 (3): 61-66.
Maguya A S, Tegel K, Junttil V, Kauranne T, Korhonen M, Burns J, Leppanen V, and Sanz B. 2015. Moving voxel method for estimating canopy base height from airborne laser scanner data. Remote Sensing, 7, 8950-8972. [DOI: 10.3390/rs7078950http://dx.doi.org/10.3390/rs7078950]
Palaiologou P, Kalabokidis K, and Kyriakidis P. 2013. Forest mapping by geoinformatics for landscape fire behaviour modelling in coastal forests, Greece. International Journal of Remote Sensing, 34 (12): 4466-4490. [DOI: 10.1080/01431161.2013.779399http://dx.doi.org/10.1080/01431161.2013.779399]
Pierce A D, Farris C A, and Taylor A H. 2012. Use of random forests for modeling and mapping forest canopy fuels for fire behavior analysis in Lassen Volcanic National Park, California, USA. Forest Ecology and Management, 279: 77-89. [DOI: 10.1016/j.foreco.2012.05.010http://dx.doi.org/10.1016/j.foreco.2012.05.010]
Qian L. Zhang Q X, and Zhang Y M. 2020. Correction effect of ensemble Kalman filter algorithm on FARSITE prediction. Fire Safety Science, 29(1): 32-41
钱兰, 张启兴, 张永明. 2020. 集合卡曼滤波算法对FARSITE模型林火蔓延预测的修正效果研究. 火灾科学, 29 (1): 32-41 [DOI:10.3969/j.issn.1004-5309.2020.01.04http://dx.doi.org/10.3969/j.issn.1004-5309.2020.01.04]
Quan X W, He B B, Liu X Z, Liao Z M, Qiu S, and Yin C M. 2019. Retrieval of fuel moisture content by using radiative transfer models from optical remote sensing data. Journal of Remote Sensing, 23(1): 62-77
全兴文, 何彬彬, 刘向茁, 廖展芒, 邱实, 殷长明. 2019. 多模型耦合下的植被冠层可燃物含水率遥感反演. 遥感学报, 23 (1): 62-77 [DOI:10.11834/jrs.20197422http://dx.doi.org/10.11834/jrs.20197422]
Reeves M C, Ryan K C, Rollins M G, and Thompson T G. 2009. Spatial fuel data products of the LANDFIRE project. International Journal of Wildland Fire, 18 (3): 250-267 [DOI: 10.1071/WF08086http://dx.doi.org/10.1071/WF08086]
Reinhardt E, and Crookston N L. 2003. The fire and fuels extension to the forest vegetation simulator.
Riaño D, Chuvieco E, Condés S, González-Matesanz J, and Ustin S L. 2004. Generation of crown bulk density for Pinus Sylvestris L. from lidar. Remote Sensing of Environment, 92 (3): 345–352. [DOI: 10.1016/j.rse.2003.12.014http://dx.doi.org/10.1016/j.rse.2003.12.014]
Rollins M G. 2009. LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. International Journal of Wildland Fire, 18 (3): 235-249. [DOI: 10.1071/WF08088http://dx.doi.org/10.1071/WF08088]
Scott J H, and Reinhardt E D. 2001. Assessing crown fire potential by linking models of surface and crown fire behavior. https://www.fs.usda.gov/research/treesearch/4623 (2022-09-13) [DOI: 10.2737/RMRS-RP-29http://dx.doi.org/10.2737/RMRS-RP-29]
Shin P, Sankey T, Moore M M, and Thode A E. 2018. Evaluating unmanned aerial vehicle images for estimating forest canopy fuels in a Ponderosa Pine Stand. Remote Sensing, 10 (8): 1266. [DOI: 10.3390/rs10081266http://dx.doi.org/10.3390/rs10081266]
Tinkham W T, Huang H, Smith M S A, Shrestha R, Falkowski M J, Hudak A T, Link T E, Glenn N F, and Marks D G. 2011. A comparison of two open source LiDAR surface classification algorithms. Remote Sensing, 3 (3): 638-649. [DOI: 10.3390/rs3030638http://dx.doi.org/10.3390/rs3030638]
Wang Y, Ni W J, Zhang Z Y, Liu J L, Yu H Y, and Zhang D F. 2018. Retrieval of forest canopy heights by using large-footprint waveform data assisted by the LiDAR model over hillsides, Journal of Remote Sensing, 22(3):466-477
汪垚, 倪文俭, 张志玉, 刘见礼, 于浩洋, 张大凤. 2018. 激光雷达回波模型辅助的坡地森林冠层高度反演. 遥感学报, 22(3): 466-477 [DOI:10.11834/jrs.20187152http://dx.doi.org/10.11834/jrs.20187152]
Wang Y, Xi X, Wang C, Yang X, Wang P, Nie S, and Du M. 2022. A novel method based on kernel density for estimating crown base height using UAV-Borne LiDAR data. IEEE Geoscience and Remote Sensing Letters, 19: 1-5. [DOI: 10.1109/LGRS.2022.3171316http://dx.doi.org/10.1109/LGRS.2022.3171316]
Wu Z W, He H S, Liang Y, Luo X, Cai L Y 2012. Spatial distribution characteristics of potential fire behavior in Fenglin Nature Reserve based on FARSITE Model. Acat Ecologica Sinica [J], 32(19): 6176-6186
吴志伟, 贺红士, 梁宇, 罗旭, 蔡龙炎. 2012. 基于FARSITE FARIE模型的丰林自然保护区潜在林火行为空间分布特征. 生态学报, 32(19): 6176-6186 [DOI: 10.5846 /stxb201109111333http://dx.doi.org/10.5846/stxb201109111333]
Xu B B, Wang W Y, Chen L F, Tao J H, Ji X Y, Zhang C J, and Fan M. 2022. Forest fire spread simulation based on VIIRS active fire data and FARSITE model. National Remote Sensing Bulletin, 26 (8): 1575-1588
徐奔奔, 王炜烨, 陈良富, 陶金花, 纪轩禹, 张成杰, 范萌. 2022. 基于VIIRS火点数据和FARSITE系统的森林火灾蔓延模拟. 遥感学报, 26 (8): 1575-1588 [DOI: 10.11834/jrs.20219427http://dx.doi.org/10.11834/jrs.20219427]
相关作者
相关机构