土地利用/覆盖变化及其对森林碳收支影响研究综述
A review of research on land use/cover change and its impact on forest carbon balance
- 2023年 页码:1-21
网络出版日期: 2023-09-11
DOI: 10.11834/jrs.20233169
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2023-09-11 ,
扫 描 看 全 文
黄子豪,杜华强,李雪建,毛方杰.XXXX.土地利用/覆盖变化及其对森林碳收支影响研究综述.遥感学报,XX(XX): 1-21
Huang Zihao,Du Huaqiang,Li Xuejian,Mao Fangjie. XXXX. A review of research on land use/cover change and its impact on forest carbon balance. National Remote Sensing Bulletin, XX(XX):1-21
土地利用/覆盖变化(LUCC)是影响陆地生态系统碳收支平衡的直接驱动因素,其对全球变暖的影响仅次于化石燃料和工业排放。森林是陆地生态系统中最大的碳库,在应对全球气候变化和实现碳中和目标中具有重要的作用。目前,有限的LUCC数据导致LUCC对碳排放的影响大大低估,同时缺乏未来气候背景下的LUCC时空分布,引起了森林碳循环对LUCC的响应研究面临诸多不确定性。如何模拟LUCC,分析LUCC对森林生态系统碳循环的影响是国内外研究的热点。本文系统归纳了国内外LUCC时空模拟方法、森林碳收支估算方法和LUCC对森林碳循环影响研究进展,并列举分析不同LUCC时空模拟、森林碳收支估算模型的优势、适用性、存在的问题。通过文献综述,指出以遥感数据为基础,模拟LUCC并驱动生态系统过程模型,实现森林生态系统碳循环时空精准模拟,是今后碳循环研究的发展趋势之一。
Land use/cover change (LUCC) is a direct driver of the carbon balance in terrestrial ecosystems
and its impact on global warming is second only to fossil fuel and industrial emissions. Forest ecosystem is the largest carbon pool in terrestrial ecosystems and has an important role to play in addressing global climate change and achieving carbon neutrality targets. However
the limited LUCC data make the impact of LUCC on carbon emissions greatly underestimated
and the lack of spatiotemporal LUCC data in the context of future climate also makes revealing the response of forest carbon cycle to LUCC face many uncertainties. How to simulate LUCC and analyze the impact of LUCC on the carbon cycle of forest ecosystems is a hot topic of research at domestic and international level. This paper systematically summarized the spatiotemporal LUCC simulation methods
forest carbon balance estimation methods and the progress of research on the impact of LUCC on forest carbon cycle
and listed and analyzed the advantages
applicability and problems of different models and methods. Through the literature review
it is pointed out that using remote sensing data as a basis to simulate LUCC and driving ecosystem process models to achieve accurate spatial and temporal simulation of forest ecosystem carbon cycle is one of the current trends and development trends in future carbon cycle research.
土地利用/覆盖变化时空模拟模型森林碳循环模型碳中和遥感
land use/cover changespatiotemporal simulation modelsforest carbon cycle modelscarbon neutralityremote sensing
Aber J D, Ollinger S V, and Driscoll C T. 1997. Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecological modelling, 101(1): 61-78 [DOI: 10.1016/S0304-3800(97)01953-4http://dx.doi.org/10.1016/S0304-3800(97)01953-4]
Allen R G, Pereira L S, Raes D, and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9): D05109
Arévalo P, Baccini A, Woodcock C E, Olofsson P, and Walker W S. 2023. Continuous mapping of aboveground biomass using Landsat time series. Remote Sensing of Environment, 288: 113483 [DOI: 10.1016/j.rse.2023.113483http://dx.doi.org/10.1016/j.rse.2023.113483]
Batisani N, and Yarnal B. 2009. Urban expansion in Centre County, Pennsylvania: Spatial dynamics and landscape transformations. Applied Geography, 29(2): 235-49 [DOI: 10.1016/j.apgeog.2008.08.007http://dx.doi.org/10.1016/j.apgeog.2008.08.007]
Behera S K, Tripathi P, Behera M D, and Tuli R. 2019. Modeling net primary productivity of tropical deciduous forests in North India using bio-geochemical model. Biodiversity and Conservation, 28(8-9): 2105-21 [DOI: 10.1007/s10531-019-01743-6http://dx.doi.org/10.1007/s10531-019-01743-6]
Bestelmeyer B T, Ash A, Brown J R, Densambuu B, Fernández-Giménez M, Johanson J, Levi M, Lopez D, Peinetti R, Rumpff L, and Shaver P. 2017. "State and Transition Models: Theory, Applications, and Challenges." In Rangeland Systems: Processes, Management and Challenges, 303-45. Cham: Springer International Publishing.
Bolton D K, Coops N C, and Wulder M A. 2015. Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using Landsat time-series and airborne lidar data. Remote Sensing of Environment, 163: 48-60 [DOI: 10.1016/j.rse.2015.03.004http://dx.doi.org/10.1016/j.rse.2015.03.004]
Bousquet P, Peylin P, Ciais P, Le Quéré C, Friedlingstein P, and Tans P P. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science, 290(5495): 1342-6 [DOI: 10.1126/science.290.5495.1342http://dx.doi.org/10.1126/science.290.5495.1342]
Box E E. 2012. Macroclimate and plant forms: an introduction to predictive modeling in phytogeography. Vol. 1: Springer Science & Business Media.
Bright B C, Hudak A T, Kennedy R E, and Meddens A J. 2014. Landsat time series and lidar as predictors of live and dead basal area across five bark beetle-affected forests. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8): 3440-52
Brown S. 2002. Measuring carbon in forests: current status and future challenges. Environmental pollution, 116(3): 363-72 [DOI: 10.1016/S0269-7491(01)00212-3http://dx.doi.org/10.1016/S0269-7491(01)00212-3]
Campbell C, Zentner R, Liang B-C, Roloff G, Gregorich E, and Blomert B. 2000. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan–effect of crop rotations and fertilizers. Canadian Journal of Soil Science, 80(1): 179-92 [DOI: 10.4141/S99-028http://dx.doi.org/10.4141/S99-028]
Cao M K, Prince S D, Small J, and Goetz S J. 2004. Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems, 7: 233-42 [DOI: 10.1007/s10021-003-0189-xhttp://dx.doi.org/10.1007/s10021-003-0189-x]
Cao X, Luo P, Li M C, Li H G, and Long A H. 2011. Spatio-temporal simulation of land use change based on a extended CA model: a case study of Shenzhen city, China. Resources Science, 33(1):127-33
曹雪, 罗平, 李满春, 李红旮, 龙爱华. 2011. 基于扩展CA模型的土地利用变化时空模拟研究——以深圳市为例. 资源科学, 33(1): 127-33
Chee Y E, Wilkinson L, Nicholson A E, Quintana-Ascencio P F, Fauth J E, Hall D, Ponzio K J, and Rumpff L. 2016. Modelling spatial and temporal changes with GIS and Spatial and Dynamic Bayesian Networks. Environmental Modelling & Software, 82: 108-20 [DOI: 10.1016/j.envsoft.2016.04.012http://dx.doi.org/10.1016/j.envsoft.2016.04.012]
Chen B X, Zhang X Z, Tao J, Wu J S, Wang J S, Shi P, Zhang Y J, and Yu C Q. 2014. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 189-190: 11-8 [DOI: 10.1016/j.agrformet.2014.01.002http://dx.doi.org/10.1016/j.agrformet.2014.01.002]
Chen G S, and Tian H Q. 2007. Land use/cover change effects on carbon cycling in terrestrial ecosystems. Chinese Journal of Plant Ecology, 31(2): 189-204
陈广生, 田汉勤. 2007. 土地利用/覆盖变化对陆地生态系统碳循环的影响. 植物生态学报, 31(2): 189-204
Chen J M, Chen X Y, Ju W M, and Geng X Y. 2005. Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305: 15-39 [DOI: 10.1016/j.jhydrol.2004.08.029http://dx.doi.org/10.1016/j.jhydrol.2004.08.029]
Chen J M, Liu J, Cihlar J, and Goulden M L. 1999. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecological modelling, 124(2): 99-119 [DOI: 10.1016/S0304-3800(99)00156-8http://dx.doi.org/10.1016/S0304-3800(99)00156-8]
Chen J M, Liu J, Leblanc S G, Lacaze R, and Roujean J L. 2003. Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sensing of Environment, 84(4): 516-25 [DOI: 10.1016/S0034-4257(02)00150-5http://dx.doi.org/10.1016/S0034-4257(02)00150-5]
Chen Q, Mao F J, Du H Q, Li X J, Yin S Y, and Yan M J. 2022. Spatiotemporal variations of subtropical extreme precipitation and its influence on potential net primary productivity in China. Chinese Journal of Ecology, 41(11):2117-27
陈琦, 毛方杰, 杜华强, 李雪建, 尹世燕, 闫梦洁. 2022. 中国亚热带极端降水时空演变及其对潜在净初级生产力的影响. 生态学杂志, 41(11): 2117-27
Chen Q. 2018. Changes in land cover, forest spatial patterns and attributes under an intensive urbanization scenario - A case study from Nanjing Laoshan forest park. Nanjing Forestry University (陈倩. 2018. 城市化进程下土地覆盖、森林空间模式及属性变化分析. 南京林业大学.)
Chen W J, Chen J, and Cihlar J. 2000. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry. Ecological modelling, 135(1): 55-79 [DOI: 10.1016/S0304-3800(00)00371-9http://dx.doi.org/10.1016/S0304-3800(00)00371-9]
Chen W J, Chen J, Liu J, and Cihlar J. 2000. Approaches for reducing uncertainties in regional forest carbon balance. Global biogeochemical cycles, 14(3): 827-38 [DOI: 10.1029/1999GB001206http://dx.doi.org/10.1029/1999GB001206]
Chen Z Z, Huang M, Zhu D Y, and Altan O. 2021. Integrating Remote Sensing and a Markov-FLUS Model to Simulate Future Land Use Changes in Hokkaido, Japan. Remote Sensing, 13(13): 2621 [DOI: 10.3390/rs13132621http://dx.doi.org/10.3390/rs13132621]
Costanza R, and Ruth M. 1998. Using Dynamic Modeling to Scope Environmental Problems and Build Consensus. Environ Manage, 22(2): 183-95 [DOI: 10.1007/s002679900095http://dx.doi.org/10.1007/s002679900095]
Crooks A T. 2010. Constructing and implementing an agent-based model of residential segregation through vector GIS. International Journal of Geographical Information Science, 24(5): 661-75 [DOI: 10.1080/13658810903569572http://dx.doi.org/10.1080/13658810903569572]
Cui L, Du H Q, Zhou G M, Li X J, Mao F J, Xu X J, Fan W L, Li Y G, Zhu D E, Liu T Y, amd Xing L Q. 2018. Combination of decision tree and linear spectral unmixing for extracting bamboo forest information in China. Journal of Remote Sensing, 22(4): 609–619
崔璐, 杜华强, 周国模, 李雪建, 毛方杰, 徐小军, 范渭亮, 李阳光, 朱迪恩, 刘腾艳, 邢璐琪. 2018. 决策树结合混合像元分解的中国竹林遥感信息提取. 遥感学报, 22(4): 609–619 [DOI:10.11834/jrs.20165130http://dx.doi.org/10.11834/jrs.20165130]
Cunningham S, Rogan J, Martin D, DeLauer V, McCauley S, and Shatz A. 2015. Mapping land development through periods of economic bubble and bust in Massachusetts using Landsat time series data. GIScience & Remote Sensing, 52(4): 397-415 [DOI: 10.1080/15481603.2015.1045277http://dx.doi.org/10.1080/15481603.2015.1045277]
Daniel C J, Frid L, Sleeter B M, Fortin M J, and Kriticos D. 2016. State‐and‐transition simulation models: a framework for forecasting landscape change. Methods in Ecology and Evolution, 7(11): 1413-23 [DOI: 10.1111/2041-210x.12597http://dx.doi.org/10.1111/2041-210x.12597]
Diao J J, Liu J X, Zhu Z L, Wei X Y, and Li M S. 2022. Active forest management accelerates carbon storage in plantation forests in Lishui, southern China. Forest Ecosystems, 9: 100004 [DOI: 10.1016/j.fecs.2022.100004http://dx.doi.org/10.1016/j.fecs.2022.100004]
Dixon R K, Solomon A M, Brown S, Houghton R A, Trexier M C, and Wisniewski J. 1994. Carbon Pools and Flux of Global Forest Ecosystems. Science, 263(5144): 185-90 [DOI: 10.1126/science.263.5144.185http://dx.doi.org/10.1126/science.263.5144.185]
Dong L F, Du H Q, Han N, Li X J, Zhu D E, Mao F j, Zhang M, Zheng J L, Liu H, Huang Z H, and He S B. 2020. Application of Convolutional Neural Network on Lei Bamboo Above-Ground-Biomass (AGB) Estimation Using Worldview-2. Remote Sensing, 12(6): 958 [DOI: 10.3390/rs12060958http://dx.doi.org/10.3390/rs12060958]
Du H Q, Mao F J, Zhou G M, Li X J, Xu X J, Ge H L, Cui L, Liu Y L, Zhu D E, and Li Y G. 2018. Estimating and Analyzing the Spatiotemporal Pattern of Aboveground Carbon in Bamboo Forest by Combining Remote Sensing Data and Improved BIOME-BGC Model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(7): 2282-95 [DOI: 10.1109/jstars.2018.2817344http://dx.doi.org/10.1109/jstars.2018.2817344]
Duncanson L, Kellner J R, Armston J, Dubayah R, Minor D M, Hancock S, Healey S P, Patterson P L, Saarela S, Marselis S, Silva C E, Bruening J, Goetz S J, Tang H, Hofton M, Blair B, Luthcke S, Fatoyinbo L, Abernethy K, Alonso A, Andersen H-E, Aplin P, Baker T R, Barbier N, Bastin J F, Biber P, Boeckx P, Bogaert J, Boschetti L, Boucher P B, Boyd D S, Burslem D F R P, Calvo-Rodriguez S, Chave J, Chazdon R L, Clark D B, Clark D A, Cohen W B, Coomes D A, Corona P, Cushman K C, Cutler M E J, Dalling J W, Dalponte M, Dash J, de-Miguel S, Deng S, Ellis P W, Erasmus B, Fekety P A, Fernandez-Landa A, Ferraz A, Fischer R, Fisher A G, García-Abril A, Gobakken T, Hacker J M, Heurich M, Hill R A, Hopkinson C, Huang H, Hubbell S P, Hudak A T, Huth A, Imbach B, Jeffery K J, Katoh M, Kearsley E, Kenfack D, Kljun N, Knapp N, Král K, Krůček M, Labrière N, Lewis S L, Longo M, Lucas R M, Main R, Manzanera J A, Martínez R V, Mathieu R, Memiaghe H, Meyer V, Mendoza A M, Monerris A, Montesano P, Morsdorf F, Næsset E, Naidoo L, Nilus R, O’Brien M, Orwig D A, Papathanassiou K, Parker G, Philipson C, Phillips O L, Pisek J, Poulsen J R, Pretzsch H, Rüdiger C, Saatchi S, Sanchez-Azofeifa A, Sanchez-Lopez N, Scholes R, Silva C A, Simard M, Skidmore A, Stereńczak K, Tanase M, Torresan C, Valbuena R, Verbeeck H, Vrska T, Wessels K, White J C, White L J T, Zahabu E, and Zgraggen C. 2022. Aboveground biomass density models for NASA’s Global Ecosystem Dynamics Investigation (GEDI) lidar mission. Remote Sensing of Environment, 270: 112845 [DOI: 10.1016/j.rse.2021.112845http://dx.doi.org/10.1016/j.rse.2021.112845]
Ellis E, and Pontius R. 2013. Land-use and land-cover change. http://editors.eol.org/eoearth/wiki/land-use_and_land-cover_changeshttp://editors.eol.org/eoearth/wiki/land-use_and_land-cover_changes.
Fang J Y, Chen A, Peng C H, Zhao S Q, and Ci L J. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292(5525): 2320-2 [DOI: 10.1126/science.1058629http://dx.doi.org/10.1126/science.1058629]
Fang J, Yu G, Liu L, Hu S, and Chapin F S, 3rd. 2018. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4015-20 [DOI: 10.1073/pnas.1700304115http://dx.doi.org/10.1073/pnas.1700304115]
Farquhar G, Caemmerer S v, and Berry J. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78-90 [DOI: 10.1007/BF00386231http://dx.doi.org/10.1007/BF00386231]
Feng X, Liu G, Chen J M, Chen M, Liu J, Ju W M, Sun R, and Zhou W. 2007. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. J Environ Manage, 85(3): 563-73 [DOI: 10.1016/j.jenvman.2006.09.021http://dx.doi.org/10.1016/j.jenvman.2006.09.021]
Gao C Y. 2015. Simulation of forest cycle carbon under the changes of climate scenario in Heilongjiang. Northeast Forestry University
高春雨. 2015. 气候变化情景下黑龙江省森林碳循环模拟. 东北林业大学.
Ge Q S, Dai J H, He F N, Pan Y, and Wang M M. 2008. A study of land use, land cover change and carbon cycle in China over the past 300 years. Science in China Series D: Earth Sciences, 38(2):197-210
葛全胜, 戴君虎, 何凡能, 潘嫄, 王梦麦. 2008. 过去300年中国土地利用、土地覆被变化与碳循环研究. 中国科学(D辑:地球科学), 38(2): 197-210
Gomes E, Inacio M, Bogdzevic K, Kalinauskas M, Karnauskaite D, and Pereira P. 2021. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci Total Environ, 781: 146716 [DOI: 10.1016/j.scitotenv.2021.146716http://dx.doi.org/10.1016/j.scitotenv.2021.146716]
Gu L, Gong Z W, and Du Y X. 2021. Evolution characteristics and simulation prediction of forest and grass landscape fragmentation based on the “Grain for Green” projects on the Loess Plateau, P.R. China. Ecological Indicators, 131: 108240 [DOI: 10.1016/j.ecolind.2021.108240http://dx.doi.org/10.1016/j.ecolind.2021.108240]
Guo B Q, Gao D, Zhang H F, and Duan Y X. 2012. Land use changes based on markov model. Journal of Henan Polytechnic University(Natural Science), 31(4): 479-84
郭变青, 高迪, 张红方, 段玉香. 2012. 基于马尔可夫模型的土地利用变化研究. 河南理工大学学报(自然科学版), 31(4): 479-84
Gurney K R, Law R M, Denning A S, Rayner P J, Baker D, Bousquet P, Bruhwiler L, Chen Y H, Ciais P, Fan S, Fung I Y, Gloor M, Heimann M, Higuchi K, John J, Maki T, Maksyutov S, Masarie K, Peylin P, Prather M, Pak B C, Randerson J, Sarmiento J, Taguchi S, Takahashi T, and Yuen C W. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415(6872): 626-30 [DOI: 10.1038/415626ahttp://dx.doi.org/10.1038/415626a]
Han H, Yang C F, and Song J P. 2015. Scenario Simulation and the Prediction of Land Use and Land Cover Change in Beijing, China. Sustainability, 7(4): 4260-79 [DOI: 10.3390/su7044260http://dx.doi.org/10.3390/su7044260]
Harris N L, Gibbs D A, Baccini A, Birdsey R A, de Bruin S, Farina M, Fatoyinbo L, Hansen M C, Herold M, Houghton R A, Potapov P V, Suarez D R, Roman-Cuesta R M, Saatchi S S, Slay C M, Turubanova S A, and Tyukavina A. 2021. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11(3): 234-40 [DOI: 10.1038/s41558-020-00976-6http://dx.doi.org/10.1038/s41558-020-00976-6]
Hickler T, Smith B, Sykes M T, Davis M B, Sugita S, and Walker K. 2004. Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 85(2): 519-30 [DOI: 10.1890/02-0344http://dx.doi.org/10.1890/02-0344]
Hilker T, Wulder M A, Coops N C, Linke J, McDermid G, Masek J G, Gao F, and White J C. 2009. A new data fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, 113(8): 1613-27 [DOI: 10.1016/j.rse.2009.03.007http://dx.doi.org/10.1016/j.rse.2009.03.007]
Hou H, Zhou B B, Pei F, Hu G, Su Z, Zeng Y, Zhang H, Gao Y, Luo M, and Li X. 2022. Future Land Use/Land Cover Change Has Nontrivial and Potentially Dominant Impact on Global Gross Primary Productivity. Earth's Future, 10(9): e2021EF002628 [DOI: 10.1029/2021EF002628http://dx.doi.org/10.1029/2021EF002628]
Hou N, He J X, and Zhu X Q. 2009. Review on carbon cycle of forest terrestrial ecosystem. Ecological Economy, 216(10):140-43
侯宁, 何继新, 朱学群. 2009. 陆地生态系统碳循环研究述评. 生态经济, 216(10): 140-3
Houghton R A, and Nassikas A A. 2018. Negative emissions from stopping deforestation and forest degradation, globally. Glob Chang Biol, 24(1): 350-9 [DOI: 10.1111/gcb.13876http://dx.doi.org/10.1111/gcb.13876]
Houghton R, and Hackler J. 1999. Emissions of carbon from forestry and land‐use change in tropical Asia. Global Change Biology, 5(4): 481-92 [DOI: 10.1046/j.1365-2486.1999.00244.xhttp://dx.doi.org/10.1046/j.1365-2486.1999.00244.x]
Houghton R, Hobbie J, Melillo J M, Moore B, Peterson B, Shaver G, and Woodwell G. 1983. Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO" 2 to the Atmosphere. Ecological monographs, 53(3): 235-62 [DOI: 10.2307/1942531http://dx.doi.org/10.2307/1942531]
Houghton R. 2002. Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy. Climate Policy, 2(1): 71-88 [DOI: 10.3763/cpol.2002.0206http://dx.doi.org/10.3763/cpol.2002.0206]
Huang C, Goward S N, Masek J G, Thomas N, Zhu Z, and Vogelmann J E. 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114(1): 183-98
Huang Z H, Du H Q, Li X J, Zhang M, Mao F J, Zhu D E, He S B, and Liu H. 2020. Spatiotemporal LUCC Simulation under Different RCP Scenarios Based on the BPNN_CA_Markov Model: A Case Study of Bamboo Forest in Anji County. ISPRS International Journal of Geo-Information, 9(12): 718 [DOI: 10.3390/ijgi9120718http://dx.doi.org/10.3390/ijgi9120718]
Huang Z H, Li X J, Du H Q, Mao F J, Han N, Fan W L, Xu Y X, and Luo X. 2022. Simulating Future LUCC by Coupling Climate Change and Human Effects Based on Multi-Phase Remote Sensing Data. Remote Sensing, 14(7): 1698 [DOI: 10.3390/rs14071698http://dx.doi.org/10.3390/rs14071698]
Hussain M, Chen D, Cheng A, Wei H, and Stanley D. 2013. Change detection from remotely sensed images: From pixel-based to object-based approaches. ISPRS Journal of Photogrammetry and Remote Sensing, 80: 91-106 [DOI: 10/gddkjphttp://dx.doi.org/10/gddkjp]
Ji J. 1995. A climate-vegetation interaction model: Simulating physical and biological processes at the surface. Journal of Biogeography, 22: 445-51 [DOI: 10.2307/2845941http://dx.doi.org/10.2307/2845941]
Jiang Q O, Deng X Z, Zhan J Y, and Liu X Q. 2008. Impacts of cultivated land conversion on the vegetation carbon storage in the Huang-Huai-Hai Plain. Geographical Research, 27(4): 839-46+975
姜群鸥, 邓祥征, 战金艳, 刘兴权. 2008. 黄淮海平原耕地转移对植被碳储量的影响. 地理研究, 27(4): 839-46 + 975
Jiao J G, Yang L Z, Wu J X, Wang H Q, Li H X, and Ellis E C. 2010. Land Use and Soil Organic Carbon in China's Village Landscapes. Pedosphere, 20(001): 1-14 [DOI: 10.1016/S1002-0160(09)60277-0http://dx.doi.org/10.1016/S1002-0160(09)60277-0]
Jiao M Y, Hu M M, and Xia B C. 2019. Spatiotemporal dynamic simulation of land-use and landscape-pattern in the Pearl River Delta, China. Sustainable Cities and Society, 49: 101581 [DOI: 10.1016/j.scs.2019.101581http://dx.doi.org/10.1016/j.scs.2019.101581]
Jin S, and Sader S A. 2005. Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sensing of Environment, 94(3): 364-72 [DOI: 10.1016/j.rse.2004.10.012http://dx.doi.org/10.1016/j.rse.2004.10.012]
Jung M, Reichstein M, Margolis H A, Cescatti A, Richardson A D, Arain M A, Arneth A, Bernhofer C, Bonal D, and Chen J. 2011. Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. Journal of Geophysical Research: Biogeosciences, 116: G00J07 [DOI: 10.1029/2010JG001566http://dx.doi.org/10.1029/2010JG001566]
Kang Z S, Zhang S, Bai Y, Malak H, and Zhang J H. 2021. Spatiotemporal changes of grassland net primary productivity (NPP) in Inner Mongolia and its response to drought. Acta Agrestia Sinica, 29(1): 156-65
康振山, 张莎, 白雲, Malak H, 张佳华. 2021. 内蒙古草地净初级生产力时空变化及其对干旱的响应. 草地学报, 29(1): 156-65
Kennedy R E, Yang Z, and Cohen W B. 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of Environment, 114(12): 2897-910
Khatibi A, Pourebrahim S, and Danehkar A. 2018. A Cellular Automata Model for Monitoring and Simulating Urban Land Use/Cover Changes toward Sustainability. Journal of Environmental Engineering and Landscape Management, 26(1): 1-7 [DOI: 10.3846/16486897.2017.1284666http://dx.doi.org/10.3846/16486897.2017.1284666]
Khoshnood Motlagh S, Sadoddin A, Haghnegahdar A, Razavi S, Salmanmahiny A, and Ghorbani K. 2021. Analysis and prediction of land cover changes using the land change modeler (LCM) in a semiarid river basin, Iran. Land Degradation & Development, 32(10): 3092-105 [DOI: 10.1002/ldr.3969http://dx.doi.org/10.1002/ldr.3969]
Kline J D, Moses A, Lettman G J, and Azuma D L. 2007. Modeling forest and range land development in rural locations, with examples from eastern Oregon. Landscape and Urban Planning, 80(3): 320-32 [DOI: 10.1016/j.landurbplan.2006.10.017http://dx.doi.org/10.1016/j.landurbplan.2006.10.017]
Kong J Q, Yang R, Su Y Z, and Fu Z D. 2018. Effect of land use and cover change on carbon stock dynamics in a typical desert oasis. Acta Ecologica Sinica, 38(21): 7801-12
孔君洽, 杨荣, 苏永中, 付志德. 2018. 基于土地利用/覆被变化的荒漠绿洲碳储量动态评估. 生态学报, 38(21): 7801-12
Lai L. 2010. Carbon emission effect of land use in China. Nanjing University
赖力. 2010. 中国土地利用的碳排放效应研究. 南京大学.
Lal R. 2002. Soil carbon dynamics in cropland and rangeland. Environmental pollution, 116(3): 353-62 [DOI: 10.1016/s0269-7491(01)00211-1http://dx.doi.org/10.1016/s0269-7491(01)00211-1]
Lapola D M, Priess J A, and Bondeau A. 2009. Modeling the land requirements and potential productivity of sugarcane and jatropha in Brazil and India using the LPJmL dynamic global vegetation model. Biomass and Bioenergy, 33(8): 1087-95 [DOI: 10.1016/j.biombioe.2009.04.005http://dx.doi.org/10.1016/j.biombioe.2009.04.005]
Law B E, Hudiburg T W, Berner L T, Kent J J, Buotte P C, and Harmon M E. 2018. Land use strategies to mitigate climate change in carbon dense temperate forests. Proc Natl Acad Sci U S A, 115(14): 3663-8 [DOI: 10.1073/pnas.1720064115http://dx.doi.org/10.1073/pnas.1720064115]
Lee H. 2008. Mapping deforestation and age of evergreen trees by applying a binary coding method to time-series landsat november images. IEEE Transactions on Geoscience and Remote Sensing, 46: 3926-36 [DOI: 10.1109/TGRS.2008.2001158http://dx.doi.org/10.1109/TGRS.2008.2001158]
Leemans R, van Amstel A, Battjes C, Kreileman E, and Toet S. 1996. The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source. Global Environmental Change, 6(4): 335-57 [DOI: 10.1016/s0959-3780(96)00028-3http://dx.doi.org/10.1016/s0959-3780(96)00028-3]
Li D K, Fan J Z, and Dong J F. 2011.Spatial and temporal patterns of net primary productivity from 1981 to 2000 in Shaanxi Province. Acta Botanica Boreali-Occidentalia Sinica, 31(9): 1873-7
李登科, 范建忠, 董金芳. 2011. 1981-2000年陕西省植被净初级生产力时空变化. 西北植物学报, 31(9): 1873-7
Li K R. 1996. Research progress of global climate change and its impact and future prospect. Acta Geographica Sinica, 51(S1):1-14
李克让. 1996. 全球气候变化及其影响研究进展和未来展望. 地理学报, 51(S1): 1-14
Li M, He Y T, Fu G, Shi P L, Zhang X Z, Sun J, Li R Q, and Wang J B. 2016. Livestock-forage balance in the Three River Headwater region based on the terrestrial ecosystem model. Ecology and Environmental Sciences, 25(12): 1915-21
李猛, 何永涛, 付刚, 石培礼, 张宪洲, 孙建, 李仁强, 王军邦. 2016. 基于TEM模型的三江源草畜平衡分析. 生态环境学报, 25(12): 1915-21
Li W P, Zhang Y W, Shi X L, Zhou W Y, Huang A N, Mu M Q, Qiu B, and Ji J J. 2019. Development of land surface model BCC_AVIM2. 0 and its preliminary performance in LS3MIP/CMIP6. Journal of Meteorological Research, 33: 851-69 [DOI: 10.1007/s13351-019-9016-yhttp://dx.doi.org/10.1007/s13351-019-9016-y]
Li X J, Du H Q, Mao F J, Zhou G M, Chen L, Xing L Q, Fan W L, Xu X J, Liu Y L, Cui L, Li Y G, Zhu D E, and Liu T Y. 2018. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agricultural and Forest Meteorology, 256-257: 445-57 [DOI: 10.1016/j.agrformet.2018.04.002http://dx.doi.org/10.1016/j.agrformet.2018.04.002]
Li X J, Du H Q, Mao F J, Zhou G M, Han N, Xu X J, Liu Y L, Zhu D E, Zheng J L, Dong L F, and Zhang M. 2019. Assimilating spatiotemporal MODIS LAI data with a particle filter algorithm for improving carbon cycle simulations for bamboo forest ecosystems. Science of The Total Environment, 694: 133803 [DOI: 10.1016/j.scitotenv.2019.133803http://dx.doi.org/10.1016/j.scitotenv.2019.133803]
Li X J, Mao F J, Du H Q, Zhou G M, Xu X J, Li P H, Liu Y L, and Cui L. 2016.Simulating of carbon fluxes in bamboo forest ecosystem using BEPS model on the LAI assimilated with Dual Ensemble Kalman Filter. Chinese Journal of Applied Ecology, 27(12): 3797-806
李雪建, 毛方杰, 杜华强, 周国模, 徐小军, 李平衡, 刘玉莉, 崔璐. 2016. 双集合卡尔曼滤波LAI同化结合BEPS模型的竹林生态系统碳通量模拟. 应用生态学报, 27(12): 3797-806
Li X R, Gao H, Han L P, and Liu J T. 2017.Spatio-temporal variations in vegetation NPP and the driving factors in Taihang Mountain Area. Chinese Journal of Eco-Agriculture, 25(4): 498-508
李晓荣, 高会, 韩立朴, 刘金铜. 2017. 太行山区植被NPP时空变化特征及其驱动力分析. 中国生态农业学报, 25(4): 498-508
Li X R, Gao H, Han L P, and Liu J T. 2017.Spatio-temporal variations in vegetation NPP and the driving factors in Taihang Mountain Area. Chinese Journal of Eco-Agriculture, 25(4): 498-508
李晓荣, 高会, 韩立朴, 刘金铜. 2017. 太行山区植被NPP时空变化特征及其驱动力分析. 中国生态农业学报, 25(4): 498-508
Li X, and Yeh A G. 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4): 323-43 [DOI: 10.1080/13658810210137004http://dx.doi.org/10.1080/13658810210137004]
Li X, Liu X P, He J Q, Li D, Chen Y M, Pang Y, and Li S Y. 2009. A Geographical simulation and optimization system based on coupling strategies. Acta Geographica Sinica, 64(8): 1009-18
黎夏, 刘小平, 何晋强, 李丹, 陈逸敏, 庞瑶, 李少英. 2009. 基于耦合的地理模拟优化系统. 地理学报, 64(8): 1009-18
Li X, Ye J A. 2005. Cellular automata for smiulating complex land use systems using neural networks. Geographical research, 24(1): 19-27
黎夏, 叶嘉安. 2005. 基于神经网络的元胞自动机及模拟复杂土地利用系统. 地理研究, 24(1): 19-27
Liang L, Geng D, Yan J, Qiu S Y, Shi Y Y, Wang S G, Wang L J, Zhang L P, and Kang J R. 2022. Remote Sensing Estimation and Spatiotemporal Pattern Analysis of Terrestrial Net Ecosystem Productivity in China. Remote Sensing, 14(8): 1902 [DOI: 10.3390/rs14081902http://dx.doi.org/10.3390/rs14081902]
Liang Y J, Xu Z M, and Zhong F L. 2011. Land use scenario analyses by based on system dynamic model and CLUE-S model at regional scale: a case study of Ganzhou District of Zhangye City. Geographical Research, 30(3): 564-76
梁友嘉, 徐中民, 钟方雷. 2011. 基于SD和CLUE-S模型的张掖市甘州区土地利用情景分析. 地理研究, 30(3): 564-76
Liao W, Liu X, Xu X, Chen G, Liang X, Zhang H, and Li X. 2020. Projections of land use changes under the plant functional type classification in different SSP-RCP scenarios in China. Sci Bull (Beijing), 65(22): 1935-47 [DOI: 10.1016/j.scib.2020.07.014http://dx.doi.org/10.1016/j.scib.2020.07.014]
Lieth H. 1975. Modeling the Primary Productivity of the World. Heidelberg: Springer Berlin Heidelberg.
Liu J, Chen J M, and Cihlar J. 2003. Mapping evapotranspiration based on remote sensing: An application to Canada's landmass. Water Resources Research, 39(7): 1189-92 [DOI: 10.1029/2002WR001680http://dx.doi.org/10.1029/2002WR001680]
Liu J, Chen J M, Cihlar J, and Chen W. 1999. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. Journal of Geophysical Research: Atmospheres, 104(D22): 27735-54 [DOI: 10.1029/1999JD900768http://dx.doi.org/10.1029/1999JD900768]
Liu J, Chen J M, Cihlar J, and Chen W. 2002. Net primary productivity mapped for Canada at 1km resolution. Global ecology and biogeography, 11(2): 115-29 [DOI: doi: 10.1046/j.1466-822x.2002.00278.xhttp://dx.doi.org/doi:10.1046/j.1466-822x.2002.00278.x]
Liu J, Chen J M, Cihlar J, and Park W M. 1997. A process-based boreal ecosystem productivity simulator using remote sensing inputs. Remote Sensing of Environment, 62(2): 158-75 [DOI: 10.1016/S0034-4257(97)00089-8http://dx.doi.org/10.1016/S0034-4257(97)00089-8]
Liu T Y, Mao F J, Li X J, Xing L Q, Dong L F, Zheng J L, Zhang M, and Du H Q. 2019. Spatiotemporal dynamic simulation on aboveground carbon storage of bamboo forest and its influence factors in Zhejiang Province, China. Chinese Journal of Applied Ecology, 30(5): 1743-53
刘腾艳, 毛方杰, 李雪建, 邢璐琪, 董落凡, 郑钧泷, 张梦, 杜华强. 2019. 浙江省竹林地上碳储量的时空动态模拟及影响因素. 应用生态学报, 30(5): 1743-53 [DOI: 10.13287/j.1001-9332.201905.035http://dx.doi.org/10.13287/j.1001-9332.201905.035]
Liu W W, Wang X K, Lu F, Ouyang Z Y. 2015. Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review. Chinese journal of Applied Ecology, 26(9): 2881-90
刘魏魏, 王效科, 逯非, 欧阳志云. 2015. 全球森林生态系统碳储量、固碳能力估算及其区域特征. 应用生态学报, 26(9): 2881-90 [DOI: 10.13287/j.1001-9332.20150630.005http://dx.doi.org/10.13287/j.1001-9332.20150630.005]
Liu X P, Li X, and Ye J A. 2006. Similation of spatial decision-making behavior and land use pattern evolution based on multi-agent system. Science in China Series D:Earth Sciences, 36(11): 1027-36
刘小平, 黎夏, 叶嘉安. 2006. 基于多智能体系统的空间决策行为及土地利用格局演变的模拟. 中国科学(D辑:地球科学), 36(11): 1027-36
Liu X, Liang X, Li X, Xu X, Ou J, Chen Y, Li S, Wang S, and Pei F. 2017. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landscape and Urban Planning, 168: 94-116 [DOI: 10.1016/j.landurbplan.2017.09.019http://dx.doi.org/10.1016/j.landurbplan.2017.09.019]
Lu D S. 2006. The potential and challenge of remote sensing-based biomass estimation. International journal of remote sensing, 27(1297-1328): 27 [DOI: 10.1080/01431160500486732http://dx.doi.org/10.1080/01431160500486732]
Luo G P, Yin C Y, Chen X, Xu W Q, and Lu L. 2010. Combining system dynamic model and CLUE-S model to improve land use scenario analyses at regional scale: A case study of Sangong watershed in Xinjiang, China. Ecological Complexity, 7(2): 198-207 [DOI: 10.1016/j.ecocom.2010.02.001http://dx.doi.org/10.1016/j.ecocom.2010.02.001]
Ma L, Liu Y, Zhang X, Ye Y, Yin G, and Johnson B A. 2019. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152: 166-77 [DOI: 10/gf3s65http://dx.doi.org/10/gf3s65]
Mao F J, Du H Q, Zhou G M, Li X J, Xu X J, Li P H, and Sun S B. 2017. Coupled LAI assimilation and BEPS model for analyzing the spatiotemporal pattern and heterogeneity of carbon fluxes of the bamboo forest in Zhejiang Province, China. Agricultural and Forest Meteorology, 242: 96-108 [DOI: 10.1016/j.agrformet.2017.03.022http://dx.doi.org/10.1016/j.agrformet.2017.03.022]
Mao F J, Li P H, Zhou G M, Du H Q, Xu X J, Shi Y J, Mo L F, Zhou Y F, and Tu G Q. 2016. Development of the BIOME-BGC model for the simulation of managed Moso bamboo forest ecosystems. Journal of Environmental Management, 172: 29-39 [DOI: 10.1016/j.jenvman.2015.12.013http://dx.doi.org/10.1016/j.jenvman.2015.12.013]
Mao F J, Zhou G M, Li P H, Du H Q, Xu X J, Shi Y J, Mo L F, Zhou Y F, and Tu G Q. 2017. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model. Journal of Environmental Management, 191: 126-35 [DOI: 10.1016/j.jenvman.2017.01.016http://dx.doi.org/10.1016/j.jenvman.2017.01.016]
Mao F, Li X, Zhou G, Huang Z, Xu Y, Chen Q, Yan M, Sun J, Xu C, and Du H. 2023. Land use and cover in subtropical East Asia and Southeast Asia from 1700 to 2018. Global and Planetary Change, 226: 104157 [DOI: 10.1016/j.gloplacha.2023.104157http://dx.doi.org/10.1016/j.gloplacha.2023.104157]
Mao L X, Sun Y L, and Yan X D. 2006. Modeling of carbon cycling in terrestrial ecosystem. Chinese Journal of Applied Ecology, 17(11): 2189-95
毛留喜, 孙艳玲, 延晓冬. 2006. 陆地生态系统碳循环模型研究概述. 应用生态学报, 17(11): 2189-95
Marta L, Michelle R, Erika C, Filippo G, Rosmeri D R, and Diego D S. 2018. Land Use Change over the Amazon Forest and Its Impact on the Local Climate. Water, 10(2): 149 [DOI: 10.3390/w10020149http://dx.doi.org/10.3390/w10020149]
Matthews H D, Graham T L, Keverian S, Lamontagne C, Seto D, and Smith T J. 2014. National contributions to observed global warming. Environmental Research Letters, 9(1): 468-75 [DOI: 10.1088/1748-9326/9/1/014010http://dx.doi.org/10.1088/1748-9326/9/1/014010]
Mickler R A, Earnhardt T S, and Moore J A. 2002. Regional estimation of current and future forest biomass. Environmental pollution, 116: S7-S16 [DOI: 10.1016/s0269-7491(01)00241-xhttp://dx.doi.org/10.1016/s0269-7491(01)00241-x]
Miller B W, and Frid L. 2021. A new approach for representing agent-environment feedbacks: coupled agent-based and state-and-transition simulation models. Landscape Ecology, 37(1): 43-58 [DOI: 10.1007/s10980-021-01282-yhttp://dx.doi.org/10.1007/s10980-021-01282-y]
Myneni R B, Dong J, Tucker C J, Kaufmann R K, Kauppi P E, Liski J, Zhou L, Alexeyev V, and Hughes M K. 2001. A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci U S A, 98(26): 14784-9 [DOI: 10.1073/pnas.261555198http://dx.doi.org/10.1073/pnas.261555198]
Neilson R P. 1995. A model for predicting continental‐scale vegetation distribution and water balance. Ecological Applications, 5(2): 362-85 [DOI: 10.2307/1942028http://dx.doi.org/10.2307/1942028]
Niu Z, Wang C Y. 2008. Remote Sensing Applications for Carbon Cycle. Beijing: Science Press
牛铮, 王长耀. 2008. 碳循环遥感基础与应用, 科学出版社.
Norman J M. 1982. Simulation of microclimates. Biometeorology in integrated pest management: 65-99
Obata S, Bettinger P, Cieszewski C J, and Lowe III R C. 2020. Mapping forest disturbances between 1987–2016 using all available time series landsat TM/ETM+ imagery: Developing a reliable methodology for Georgia, United States. Forests, 11(3): 335
Pan Y, Birdsey R A, Fang J, Houghton R, Kauppi P E, Kurz W A, Phillips O L, Shvidenko A, Lewis S L, Canadell J G, Ciais P, Jackson R B, Pacala S W, McGuire A D, Piao S, Rautiainen A, Sitch S, and Hayes D. 2011. A large and persistent carbon sink in the world's forests. Science, 333(6045): 988-93 [DOI: 10.1126/science.1201609http://dx.doi.org/10.1126/science.1201609]
Parton W J, Schimel D S, Cole C V, and Ojima D S. 1987. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Science Society of America Journal, 51(5): 1173-9 [DOI: 10.2136/sssaj1987.03615995005100050015xhttp://dx.doi.org/10.2136/sssaj1987.03615995005100050015x]
Phillips J D, and Van Dyke C. 2017. State-and-transition models in geomorphology. Catena, 153: 168-81 [DOI: 10.1016/j.catena.2017.02.009http://dx.doi.org/10.1016/j.catena.2017.02.009]
Piao S L, Fang J Y, and Guo Q H. 2001. Application of CASA model to the estimation of chinese terrestrial net primary productivity. Chinese Journal of Plant Ecology, 25(5): 603-8
朴世龙, 方精云, 郭庆华. 2001. 利用CASA模型估算我国植被净第一性生产力. 植物生态学报, 25(5): 603-8
Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger D Y, Laurila T, Lindroth A, Richardson A D, and Vesala T. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451(7174): 49-52 [DOI: 10.1038/nature06444http://dx.doi.org/10.1038/nature06444]
Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, and Wang T. 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458(7241): 1009-13 [DOI: 10.1038/nature07944http://dx.doi.org/10.1038/nature07944]
Piao S, He Y, Wang X, and Chen F. 2022. Estimation of China’s terrestrial ecosystem carbon sink: Methods, progress and prospects. Science China Earth Sciences, 65(4): 641-51 [DOI: 10.1007/s11430-021-9892-6http://dx.doi.org/10.1007/s11430-021-9892-6]
Piao S, Huang M, Liu Z, Wang X, Ciais P, Canadell J G, Wang K, Bastos A, Friedlingstein P, and Houghton R A. 2018. Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nature Geoscience, 11(10): 739-43 [DOI: 10.1038/s41561-018-0204-7http://dx.doi.org/10.1038/s41561-018-0204-7]
Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A, and Klooster S A. 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global biogeochemical cycles, 7(4): 811-41 [DOI: 10.1029/93GB02725http://dx.doi.org/10.1029/93GB02725]
Qian Y, Xing W, Guan X, Yang T, and Wu H. 2020. Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation. Science of The Total Environment, 722: 137738 [DOI: 10.1016/j.scitotenv.2020.137738http://dx.doi.org/10.1016/j.scitotenv.2020.137738]
Qin X H, Duan X J, Li H, and Lu Y T. 2009. Urban land expansion simulation model based on SD and CA——A case study of Nantong city. Scientia Geographica Sinica, 29(3): 439-44
秦贤宏, 段学军, 李慧, 卢雨田. 2009. 基于SD和CA的城镇土地扩展模拟模型——以江苏省南通地区为例. 地理科学, 29(03): 439-44
Qin Y, Xiao X, Wigneron J-P, Ciais P, Canadell J G, Brandt M, Li X, Fan L, Wu X, Tang H, Dubayah R, Doughty R, Crowell S, Zheng B, and Moore B. 2022. Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sensing of Environment, 278: 113087 [DOI: 10.1016/j.rse.2022.113087http://dx.doi.org/10.1016/j.rse.2022.113087]
Quaife T, Lewis P, Kauwe M, Williams M, Law B E, Disney M, and Bowyer P. 2008. Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter. Remote Sensing of Environment, 112(4): 1347-64 [DOI: 10.1016/j.rse.2007.05.020http://dx.doi.org/10.1016/j.rse.2007.05.020]
Raich J W, Rastetter E B, Melillo J M, Kicklighter D W, Steudler P A, Peterson B J, Grace A L, Moore B, 3rd, and Vorosmarty C J. 1991. Potential Net Primary Productivity in South America: Application of a Global Model. Ecol Appl, 1(4): 399-429 [DOI: 10.2307/1941899http://dx.doi.org/10.2307/1941899]
Rasmussen L V, Rasmussen K, Reenberg A, and Proud S. 2012. A system dynamics approach to land use changes in agro-pastoral systems on the desert margins of Sahel. Agricultural Systems, 107: 56-64 [DOI: 10.1016/j.agsy.2011.12.002http://dx.doi.org/10.1016/j.agsy.2011.12.002]
Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, and Andersson A J. 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8): 597-607 [DOI: 10.1038/ngeo1830http://dx.doi.org/10.1038/ngeo1830]
Rocha J, Boavida-Portugal I, and Gomes E. 2017. "Introductory chapter: Multi-agent systems." In Multi-agent Systems. IntechOpen.
Running S W, and Coughlan J C. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological modelling, 42(2): 125-54 [DOI: 10.1016/0304-3800(88)90112-3http://dx.doi.org/10.1016/0304-3800(88)90112-3]
Sakieh Y, and Salmanmahiny A. 2016. Performance assessment of geospatial simulation models of land-use change--a landscape metric-based approach. Environ Monit Assess, 188(3): 169 [DOI: 10.1007/s10661-016-5179-5http://dx.doi.org/10.1007/s10661-016-5179-5]
Schleeweis K G, Moisen G G, Schroeder T A, Toney C, Freeman E A, Goward S N, Huang C, and Dungan J L. 2020. US national maps attributing forest change: 1986–2010. Forests, 11(6): 653
Schulp C J E, Nabuurs G J, and Verburg P H. 2008. Future carbon sequestration in Europe—Effects of land use change. Agriculture, Ecosystems & Environment, 127(3): 251-64 [DOI: 10.1016/j.agee.2008.04.010http://dx.doi.org/10.1016/j.agee.2008.04.010]
Sellers P, Mintz Y, Sud Y e a, and Dalcher A. 1986. A simple biosphere model (SiB) for use within general circulation models. Journal of the atmospheric sciences, 43(6): 505-31 [DOI: 10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2http://dx.doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2]
Sleeter B M, Wilson T S, Sharygin E, and Sherba J T. 2017. Future Scenarios of Land Change Based on Empirical Data and Demographic Trends. Earth's Future, 5(11): 1068-83 [DOI: 10.1002/2017ef000560http://dx.doi.org/10.1002/2017ef000560]
Smith B, Prentice I C, and Sykes M T. 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space. Global ecology and biogeography: 621-37 [DOI: 10.1046/j.1466-822X.2001.t01-1-00256.xhttp://dx.doi.org/10.1046/j.1466-822X.2001.t01-1-00256.x]
Song X, Wang D-Y, Li F, and Zeng X-D. 2021. Evaluating the performance of CMIP6 Earth system models in simulating global vegetation structure and distribution. Advances in Climate Change Research, 12(4): 584-95 [DOI: 10.1016/j.accre.2021.06.008http://dx.doi.org/10.1016/j.accre.2021.06.008]
Song X, Yu G R, Liu Y F, Ren C Y, and Wen X F. 2004. Comparison of flux measurement by open-path and close-path eddy covariance systems. Science in China Series D:Earth Sciences, 34(S2): 67-76
宋霞, 于贵瑞, 刘允芬, 任传友, 温学发. 2004. 开路与闭路涡度相关系统通量观测比较研究. 中国科学(D辑:地球科学), 34(S2): 67-76
Stocker T. 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change: Cambridge university press.
Su Z Y, Xiong Y M, Zhu J Y, Ye Y C, and Ye M. 2006. Soil organic carbon content and distribution in a small landscape of Dongguan, South China. Pedosphere, 16(1): 10-7 [DOI: 10.1016/S1002-0160(06)60020-9http://dx.doi.org/10.1016/S1002-0160(06)60020-9]
Sun Z, Di L, and Fang H. 2019. Using long short-term memory recurrent neural network in land cover classification on Landsat and Cropland data layer time series. International journal of remote sensing, 40(2): 593-614 [DOI: 10.1080/01431161.2018.1516313http://dx.doi.org/10.1080/01431161.2018.1516313]
Surabuddin Mondal M, Sharma N, Kappas M, and Garg P. 2013. Modeling of spatio-temporal dynamics of land use and land cover in a part of Brahmaputra River basin using Geoinformatic techniques. Geocarto International, 28(7): 632-56 [DOI: 10.1080/10106049.2013.776641http://dx.doi.org/10.1080/10106049.2013.776641]
Tang F S, Chen X, Luo G P, Lin Q, Li Z J, and Jing He. 2007.Simulation on landuse change in Sangonghe Oasis of Xinjiang by system dynamics. Journal of Desert Research, 27(4): 593-9
汤发树, 陈曦, 罗格平, 蔺卿, 李照杰, and 赫静. 2007. 新疆三工河绿洲土地利用变化系统动力学仿真. 中国沙漠, 27(4): 593-9
Tang H J, Wu W B, Yang P, Chen Y Q, and Peter H V. 2009. Recent progresses of land use and land cover change(LUCC) models. Acta Geographica Sinica, 64(4): 456-68
唐华俊, 吴文斌, 杨鹏, 陈佑启, PeterH.Verburg. 2009. 土地利用/土地覆被变化(LUCC)模型研究进展. 地理学报, 64(4): 456-68
Tang X, Woodcock C E, Olofsson P, and Hutyra L R. 2021. Spatiotemporal assessment of land use/land cover change and associated carbon emissions and uptake in the Mekong River Basin. Remote Sensing of Environment, 256: 112336 [DOI: 10.1016/j.rse.2021.112336http://dx.doi.org/10.1016/j.rse.2021.112336]
Tao B, Ge Q S, Li K R, Shao X M. 2001. Progress in the studies on carbon cycle in terrestrial ecosystem. Geographical Research, 20(5): 564-75
陶波, 葛全胜, 李克让, 邵雪梅. 2001. 陆地生态系统碳循环研究进展. 地理研究, 20(5): 564-75
Tao F L, Yokozawa M, Zhang Z, Xu Y L, and Hayashi Y. 2005. Remote sensing of crop production in China by production efficiency models: models comparisons, estimates and uncertainties. Ecological modelling, 183(4): 385-96 [DOI: 10.1016/j.ecolmodel.2004.08.023http://dx.doi.org/10.1016/j.ecolmodel.2004.08.023]
Tian H Q, Melillo J, Lu C Q, Kicklighter D, Liu M L, Ren W, Xu X F, Chen G S, Zhang C, and Pan S F. 2011. China's terrestrial carbon balance: contributions from multiple global change factors. Global biogeochemical cycles, 25: GB1007 [DOI: doi.org/10.1029/2010GB003838http://dx.doi.org/doi.org/10.1029/2010GB003838]
Tian H, Liang X, Li X, Liu X P, Ou J P, Hong Y, and He Z J. 2017. Simulating Multiple Land Use Scenarios in China during 2010–2050 Based on System Dynamic Model. Tropical Geography, 37(4): 547-61 [DOI: 10.13284/j.cnki.rddl.002939http://dx.doi.org/10.13284/j.cnki.rddl.002939]
Uchijima Z, and Seino H. 1985. Agroclimatic Evaluation of Net Primary Productivity of Natural Vegetations:(1) Chikugo Model for Evaluating Net Primary Productivity. Journal of Agricultural Meteorology, 40(4): 343-52 [DOI: 10.2480/agrmet.40.343http://dx.doi.org/10.2480/agrmet.40.343]
van Meijl H, van Rheenen T, Tabeau A, and Eickhout B. 2006. The impact of different policy environments on agricultural land use in Europe. Agriculture, Ecosystems & Environment, 114(1): 21-38 [DOI: 10.1016/j.agee.2005.11.006http://dx.doi.org/10.1016/j.agee.2005.11.006]
Verbesselt J, Hyndman R, Newnham G, and Culvenor D. 2010. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1): 106-15
Verburg P H, Schot P P, Dijst M J, and Veldkamp A. 2004. Land use change modelling: current practice and research priorities. Geojournal, 61(4): 309-24 [DOI: 10.1007/s10708-004-4946-yhttp://dx.doi.org/10.1007/s10708-004-4946-y]
Verburg P H, Schulp C, Witte N, and Veldkamp A. 2006. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agriculture, Ecosystems & Environment, 114(1): 39-56 [DOI: 10.1016/j.agee.2005.11.024http://dx.doi.org/10.1016/j.agee.2005.11.024]
Verburg P H, Soepboer W, Veldkamp A, Limpiada R, Espaldon V, and Mastura S S. 2002. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environ Manage, 30(3): 391-405 [DOI: 10.1007/s00267-002-2630-xhttp://dx.doi.org/10.1007/s00267-002-2630-x]
Wang B, Li M Z, Fan W Y, Ying Y, and Jing C. 2018. Relationship between Net Primary Productivity and Forest Stand Age under Different Site Conditions and Its Implications for Regional Carbon Cycle Study. Forests, 9(1): 5 [DOI: 10.3390/f9010005http://dx.doi.org/10.3390/f9010005]
Wang J, Wu C Y, Zhang C H, Ju W M, and Fang B. 2018. Improved modeling of gross primary productivity (GPP) by better representation of plant phenological indicators from remote sensing using a process model. Ecological Indicators, 88: 332-40 [DOI: 10.1016/j.ecolind.2018.01.042http://dx.doi.org/10.1016/j.ecolind.2018.01.042]
Wang L L, and Song C C. 2010. Research advances in the responses of carbon cycle in terrestrial ecosystems to land use changes. Chinese Journal of Soil Science, 41(1): 216-21
王丽丽, 宋长春. 2010. 陆地生态系统碳循环对土地利用变化的响应. 土壤通报, 41(1): 216-21
Wang P Y, Huang X, Mango J, Zhang D, Xu D, and Li X. 2021. A Hybrid Population Distribution Prediction Approach Integrating LSTM and CA Models with Micro-Spatiotemporal Granularity: A Case Study of Chongming District, Shanghai. ISPRS International Journal of Geo-Information, 10(8): 544 [DOI: 10.3390/ijgi10080544http://dx.doi.org/10.3390/ijgi10080544]
Wang Q F, Zheng H, Zhu X J, and Yu G R. 2015. Primary estimation of Chinese terrestrial carbon sequestration during 2001–2010. Science Bulletin, 60(6): 577-90 [DOI: 10.1007/s11434-015-0736-9http://dx.doi.org/10.1007/s11434-015-0736-9]
Wang S, Lei Z, Chen J, Ju W, Feng X, and Wu W. 2011. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management, 92(6): 1651-62 [DOI: 10.1016/j.jenvman.2011.01.024http://dx.doi.org/10.1016/j.jenvman.2011.01.024]
Wang Y X, Weng B Q, and Huang Y B. 2005. Effects of land use/cover changes on soil carbon storage and carbon cycle. Subtropical Agriculture Research, 1(3):44-51
王义祥, 翁伯琦,黄毅斌. 2005. 土地利用和覆被变化对土壤碳库和碳循环的影响. 亚热带农业研究, 1(3): 44-51
Watson R T, Noble I R, Bolin B, Ravindranath N, Verardo D J, and Dokken D J. 2000. Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change: Cambridge University Press.
Wilson T S, Sleeter B M, and Cameron D R. 2016. Future land-use related water demand in California. Environmental Research Letters, 11(5): 054018 [DOI: 10.1088/1748-9326/11/5/054018http://dx.doi.org/10.1088/1748-9326/11/5/054018]
Xie B N, Qin Z F, Wang Y, and Chang Q R. 2014. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors. Transactions of the Chinese Society of Agricultural Engineering, 30(11): 244-53
谢宝妮, 秦占飞, 王洋, 常庆瑞. 2014. 黄土高原植被净初级生产力时空变化及其影响因素. 农业工程学报, 30(11): 244-53
Xu L F, Zhang J X, Chen K, Xiao L, and Xing X D. 2014. Land use change scenarios simulation in Hunan Province based on the SD model. Tropical Geography, 34(6): 859-67
许联芳, 张建新, 陈坤, 肖莉, 邢旭东. 2014. 基于SD模型的湖南省土地利用变化情景模拟. 热带地理, 34(6): 859-67
Yan Y, Wu C, and Wen Y. 2021. Determining the impacts of climate change and urban expansion on net primary productivity using the spatio-temporal fusion of remote sensing data. Ecological Indicators, 127: 107737 [DOI: 10.1016/j.ecolind.2021.107737http://dx.doi.org/10.1016/j.ecolind.2021.107737]
Yang H X, Wu B, Zhang J T, Lin D R, and Chang S L. 2005. Progress of research into carbon fixation and storage of forest ecosystems. Journal of Beijing Normal University (Natural Science), 41(2): 172-7
杨洪晓, 吴波, 张金屯, 林德荣, 常顺利. 2005. 森林生态系统的固碳功能和碳储量研究进展. 北京师范大学学报(自然科学版), 41(2): 172-7
Yang H, Huang J, and Liu D. 2020. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Applied Geography, 115: 102135 [DOI: 10.1016/j.apgeog.2019.102135http://dx.doi.org/10.1016/j.apgeog.2019.102135]
Yang J D, Ou X K, Guo J W, and Zhang Z M. 2014. Comparison of CA-Markov and Geomod models for rubber plantation prediction. Mountain Research, 32(3):267-76
杨济达, 欧晓昆, 呙靖雯, 张志明. 2014. 基于CA-Markov和Geomod模型橡胶林变化预测比较. 山地学报, 32(3): 267-76
Yang X, Jin X, Du X, Xiang X, Han J, Shan W, Fan Y, and Zhou Y. 2016. Multi-agent model-based historical cropland spatial pattern reconstruction for 1661–1952, Shandong Province, China. Global and Planetary Change, 143: 175-88 [DOI: 10.1016/j.gloplacha.2016.06.010http://dx.doi.org/10.1016/j.gloplacha.2016.06.010]
Yang Y H, Shi Y, Sun W J, Chang J F, Zhu J X, Chen L Y, Wang X, Guo Y P, Zhang H T, Yu L F, Zhao S Q, Xu K, Zhu J L, Shen H H, Wang Y Y, Peng Y F, Zhao X, Wang X P, Hu H F, Chen S P, Huang M, Wen X F, Wang S P, Zhu B, Niu S L, Tang Z Y, Liu L L, and Fang J Y. 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 65(5): 861-95 [DOI: 10.1007/s11427-021-2045-5http://dx.doi.org/10.1007/s11427-021-2045-5]
Yang Y H, Shi Y, Sun W J, Chang J F, Zhu J X, Chen L Y, Wang X, Guo Y P, Zhang H T, Yu L F, Zhao S Q, Xu K, Zhu J L, Shen H H, Wang Y Y, Peng Y F, Zhao Xia, Wang X P, Hu H F, Chen S P, Huang M, Wen X F, Wang S P, Zhu B, Niu S L, Tang Z Y, Liu L L, and Fang J Y. 2022. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. SCIENTIA SINICA Vitae, 52(4): 534-74
杨元合, 石岳, 孙文娟, 常锦峰, 朱剑霄, 陈蕾伊, 王欣, 郭焱培, 张宏图, 于凌飞, 赵淑清, 徐亢, 朱江玲, 沈海花, 王媛媛, 彭云峰, 赵霞, 王襄平, 胡会峰, 陈世苹, 黄玫, 温学发, 王少鹏, 朱彪, 牛书丽, 唐志尧, 刘玲莉, 方精云. 2022. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献. 中国科学:生命科学, 52(4): 534-74
Yao Y, Piao S, and Wang T. 2018. Future biomass carbon sequestration capacity of Chinese forests. Science Bulletin, 63(17): 1108-17 [DOI: 10.1016/j.scib.2018.07.015http://dx.doi.org/10.1016/j.scib.2018.07.015]
Yu G R, Zhang L M, and Sun X M. 2014. Progresses and prospects of Chinese terrestrial ecosystem flux observation and research network (ChinaFLUX). Progress in Geography, 33(7): 903-17
于贵瑞, 张雷明, 孙晓敏. 2014. 中国陆地生态系统通量观测研究网络(ChinaFLUX)的主要进展及发展展望. 地理科学进展, 33(7): 903-17
Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q, Li X, and Zhu X. 2014. High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proceedings of the National Academy of Sciences of the United States of America, 111(13): 4910-5 [DOI: 10.1073/pnas.1317065111http://dx.doi.org/10.1073/pnas.1317065111]
Yu W H, Zang S Y, Wu C S, Liu W, and Na X D. 2011. Analyzing and modeling land use land cover change (LUCC) in the Daqing City, China. Applied Geography, 31(2): 600-8 [DOI: 10.1016/j.apgeog.2010.11.019http://dx.doi.org/10.1016/j.apgeog.2010.11.019]
Yu Z, Lu C, Tian H, and Canadell J G. 2019. Largely underestimated carbon emission from land use and land cover change in the conterminous United States. Global Change Biology, 25(11): 3741-52 [DOI: 10.1111/gcb.14768http://dx.doi.org/10.1111/gcb.14768]
Yuan Q, Shen H, Li T, Li Z, Li S, Jiang Y, Xu H, Tan W, Yang Q, Wang J, Gao J, and Zhang L. 2020. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241: 111716 [DOI: 10/ggrkr9http://dx.doi.org/10/ggrkr9]
Zhai Y Q, Yao Y, Guan Q F, Liang X, Li X, Pan Y T, Yue H Q, Yuan Z H, and Zhou J F. 2020. Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata. International Journal of Geographical Information Science, 34(7): 1475-99 [DOI: 10.1080/13658816.2020.1711915http://dx.doi.org/10.1080/13658816.2020.1711915]
Zhang D, Wang X R, Qu L P, Li S C, Lin Y P, Yao R, Zhou X, and Li J Y. 2020. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China. Ecological Indicators, 119: 106841 [DOI: 10.1016/j.ecolind.2020.106841http://dx.doi.org/10.1016/j.ecolind.2020.106841]
Zhang M, Du H Q, Mao F J, Zhou G M, Li X J, Dong L F, Zheng J L, Zhu D E, Liu H, Huang Z H, and He S B. 2020. Spatiotemporal Evolution of Urban Expansion Using Landsat Time Series Data and Assessment of Its Influences on Forests. ISPRS International Journal of Geo-Information, 9(2): 64 [DOI: 10.3390/ijgi9020064http://dx.doi.org/10.3390/ijgi9020064]
Zhang M, Du H Q, Zhou G M, Li X J, Mao F J, Dong L F, Zheng J L, Liu H, Huang Z H, and He S B. 2019. Estimating Forest Aboveground Carbon Storage in Hang-Jia-Hu Using Landsat TM/OLI Data and Random Forest Model. Forests, 10(11): 1004 [DOI: 10.3390/f10111004http://dx.doi.org/10.3390/f10111004]
Zhang X Z. 1993. Estimation and distribution of net primary productivity of natural vegetation in China. Natural Resources, 18(1): 15-21
张宪洲. 1993. 我国自然植被净第一性生产力的估算与分布. 自然资源, 18(1): 15-21
Zhang X, and Kondragunta S. 2006. Estimating forest biomass in the USA using generalized allometric models and MODIS land products. Geophysical Research Letters, 33(9): 370-86 [DOI: 10.1029/2006GL025879http://dx.doi.org/10.1029/2006GL025879]
Zhang Y, Li Y Z, Lv J, Wang J, and Wu Y. 2021. Scenario simulation of ecological risk based on land use/cover change – A case study of the Jinghe county, China. Ecological Indicators, 131: 108176 [DOI: 10.1016/j.ecolind.2021.108176http://dx.doi.org/10.1016/j.ecolind.2021.108176]
Zhang Z M, Cheng B Y, and Du Y. 2016.Research of GeoCA model applied in urban land use prediction. Urban Geotechnical Investigation & Surveying, (3):55-8
张正明, 程宝银, 杜阳. 2016. GeoCA模型在城市土地利用预测中的应用研究. 城市勘测, (3): 55-8
Zhao G H, Chen J Y, and Ye N. 2020. Prediction of forest resource development trend in Fujian Province based on GM(1,1) model. East China Forest Management, 34(2): 75-9
赵国华, 陈建义, 叶楠. 2020. 基于GM(1,1)模型的福建省森林资源发展趋势预测. 华东森林经理, 34(2): 75-9
Zhao J F, Liu D S, Zhu Y J, Peng H W, and Xie H F. 2022. A review of forest carbon cycle models on spatiotemporal scales. Journal of Cleaner Production, 339: 130692 [DOI: 10/grcf2bhttp://dx.doi.org/10/grcf2b]
Zheng J L, Mao F J, Du H Q, Li X J, Zhou G M, Dong L F, Zhang M, Han N, Liu T Y, and Xing L Q. 2019. Spatiotemporal Simulation of Net Ecosystem Productivity and Its Response to Climate Change in Subtropical Forests. Forests, 10(8): 708 [DOI: 10.3390/f10080708http://dx.doi.org/10.3390/f10080708]
Zheng X Q, Zhao L, Xiang W N, Li N, Lv L N, and Yang X. 2012. A coupled model for simulating spatio-temporal dynamics of land-use change: A case study in Changqing, Jinan, China. Landscape and Urban Planning, 106(1): 51-61 [DOI: 10.1016/j.landurbplan.2012.02.006http://dx.doi.org/10.1016/j.landurbplan.2012.02.006]
Zhong Z K, Han X H, Xu Y D, Zhang W, Fu S Y, Liu W C, Ren C J, Yang G H, and Ren G X. 2019. Effects of land use change on organic carbon dynamics associated with soil aggregate fractions on the Loess Plateau, China. Land Degradation & Development, 30(9): 1070-82 [DOI: 10.1002/ldr.3294http://dx.doi.org/10.1002/ldr.3294]
Zhou G M, Jiang P K, Du H Q, Shi Y J. Technology for the Measurement and Enhancement of Carbon Sinks in Bamboo Forest Ecosystems. Beijing: Science Press.
周国模, 姜培坤, 杜华强, 施拥军. 2017. 竹林生态系统碳汇计测与增汇技术. 北京: 科学出版社.
Zhou G S, and Zhang X S. 1995. Study on NPP of natural vegetation in China under global climate change. Chinese Journal of Plant Ecology, 19(3): 193-200
周广胜, 张新时. 1995. 自然植被净第一性生产力模型初探. 植物生态学报, 19(3): 193-200
Zhou L, Wang S Q, Ju W M, Xiong Z, Georg K, Chen J M, and Shi H. 2013. Assessment of carbon dynamics of forest ecosystems in the Poyang Lake basin responding to afforestation and future climate change. Journal of Resources and Ecology, 4(1): 11-9 [DOI: 10.5814/j.issn.1674-764x.2013.01.002http://dx.doi.org/10.5814/j.issn.1674-764x.2013.01.002]
Zhu K, Zhang J, Niu S, Chu C, and Luo Y. 2018. Limits to growth of forest biomass carbon sink under climate change. Nature Communications, 9(1): 2709 [DOI: 10.1038/s41467-018-05132-5http://dx.doi.org/10.1038/s41467-018-05132-5]
Zhu Z H. 1993. The model of estimating net primary productivity of natural vegetation. Science Bulletin, 38(15): 1422-6
朱志辉. 1993. 自然植被净第一性生产力估计模型. 科学通报, 38(15): 1422-6
Zhu Z, Qiu S, and Ye S. 2022. Remote sensing of land change: A multifaceted perspective. Remote Sensing of Environment, 282: 113266 [DOI: 10.1016/j.rse.2022.113266http://dx.doi.org/10.1016/j.rse.2022.113266]
Zhu Z. 2017. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 130: 370-84 [DOI: 10/gbtprxhttp://dx.doi.org/10/gbtprx]
相关作者
相关机构