视频影像海滩监测技术研究:进展与展望
Advances and prospects of the shore-based video monitoring technology on beach research
- 2024年 页码:1-19
网络出版日期: 2024-03-08
DOI: 10.11834/jrs.20243311
扫 描 看 全 文
浏览全部资源
扫码关注微信
网络出版日期: 2024-03-08 ,
扫 描 看 全 文
戚洪帅,尹航,蔡锋,张弛,刘根,曹祝宾.XXXX.视频影像海滩监测技术研究:进展与展望.遥感学报,XX(XX): 1-19
QI Hongshuai,YIN Hang,CAI Feng,ZHANG Chi,LIU Gen,CAO Zhubin. XXXX. Advances and prospects of the shore-based video monitoring technology on beach research. National Remote Sensing Bulletin, XX(XX):1-19
海滩作为海岸带中一种独特的极具景观属性且易损海滨地貌形态,既是抵御海洋动力、守卫后滨生态环境的前沿阵地,又是沿海绿色经济发展的重要载体。长期以来,针对海滩的监测手段以人工现场测量为主,当前海滩研究面临多维度、高质量、长时序数据难于获取这一瓶颈问题。视频影像监测是可用于海岸过程观测和定量信息提取的光学遥感技术,为海滩全天候监测提供了新的、有效的解决方案。本文概述了岸基视频监测系统的发展历程,梳理了摄影几何与海滩关键信息提取算法的研究进展,分析了视频影像监测技术在海滩管理、海岸防护工程建设与评估、风暴潮过程观测、风沙运移过程观测等场景的适用性。在此基础上,展望了该技术的发展趋势及在我国的应用前景。探索以视频监测为代表的新型海岸带资源环境监测技术,有利于推动我国海岸动力地貌学精细化研究。
The coastal zone
positioned at the dynamic interface of land and sea
stands out as one of the most vibrant and crucial natural regions on Earth. Subject to the interactive forces of land
sea
and atmosphere
it's geomorphic and ecological systems are exceptionally delicate. Beaches
characterized by the unique scenic attributes and susceptibility to coastal landform changes
act as the frontline defense against ocean hydrodynamics forces and serve as guardians of the coastal ecological environment. Simultaneously
they play a pivotal role in fostering green coastal economies. Strengthening the monitoring and research of beaches has become an imperative requirement for achieving harmonious coexistence between humans and nature. Traditionally
beach monitoring predominantly relied on labor-intensive field measurements
resulting in time-consuming efforts and limited spatiotemporal resolution in data sampling. The current bottleneck in beach research lies in the challenge of acquiring multidimensional
high-quality
and long-duration datasets. Shore-based video monitoring
an optical remote sensing technology designed for coastal process observation and quantitative data extraction
provides a new and effective solution for continuous beach monitoring. This technology
born in the United States in the 1980s with Argus as its paradigmatic representative
has proliferated globally over the past four decades. It is now universally acknowledged as a potent tool in the field of nearshore observation. While the research on shore-based video monitoring technology started relatively late in China
it has developed rapidly. In particular
the joint efforts of the Institute of Third Institute of Oceanography China
Hohai University
and Xiamen University led to the independent development of the COSVIMS. The progress of shore-based video monitoring technology has witnessed significant strides. Algorithmic advancements related to sandy coastlines
intertidal zone topography
nearshore wave propagation & dissipation processes
nearshore currents
and bathymetry extraction have played a crucial role in enhancing the capabilities of this technology. These algorithms not only ensure accuracy but also enable a more comprehensive understanding of coastal dynamics. The applicability of video monitoring technology spans various scenarios
including beach management
coastal engineering construction and assessment
storm surge process observation
and aeolian sand transport process monitoring. Looking ahead
the future trends of shore-based video monitoring technology are promising
especially in the context of the accelerating coastal urbanization in China. The contradictions between the development and protection of coastal zone resources and the environment are becoming increasingly pronounced. The widespread adoption of shore-based video monitoring technology holds high practical significance and value for research and protecting the coastal zones along China. Breakthroughs in emerging technologies
such as artificial intelligence
5G
big data
and Cloud
coupled with the growing demand for coastal zone resource and environmental monitoring
are paving the way for greater development opportunities for shore-based video monitoring technology. In conclusion
the evolution of shore-based video monitoring technology signifies a transformative era in coastal research and management. As technology continues to advance
it opens new frontiers for understanding and preserving the delicate balance between coastal development and environmental conservation. The journey from direct measurements to advanced remote sensing exemplifies the evolution toward more efficient and sustainable coastal research methodologies.
视频影像海滩监测Argus海滩养护裂流风暴潮风沙运移
Video monitoringbeachArgusbeach nourishmentrip currentsstorm surgeaeolian transport
Aagaard T, Davidson-Arnott R, Greenwood B, Nielsen J, 2004. Sediment supply from shoreface to dunes: linking sediment transport measurements and long-term morphological evolution[J]. Geomorphology, 60(1): 205-224
Aagaard T, Holman J, 1989. Digitization of wave run-up using video records[J]. Journal of Coastal Research, 5: 547-551
Aagaard T, Kroon A, Andersen S, Møller Sørensen R, Quartel S, Vinther N, 2005. Intertidal beach change during storm conditions; Egmond, The Netherlands[J]. Marine Geology, 218(1): 65-80
Aarninkhof S G J, Turner I L, Dronkers T D T, Caljouw M, Nipius L, 2003. A video-based technique for mapping intertidal beach bathymetry[J]. Coastal Engineering, 49(4): 275-289
Aarninkhof S G, Janssen P C, Plant N G, 1997. Quantitative estimations of bar dynamics from video images[C]//Coastal Dynamics’ 97. ASCE: 365-374
Aarninkhof S, Ruessink G, Roelvink D J A, 2005. Nearshore subtidal bathymetry from time-exposure video images[J]. Journal of Geophysical Research, 110, 2005 ; doi:10.1029/2004JC002791, 110
Abessolo G O, Almar R, Angnuureng D B, Bonou F, Sohou Z, Camara I, Diouf A, Alory G, Onguéné R, Mama A C, Cissé C O T, Sy B A, Sakho I, Djakouré S, Yao S, Tano A R, Bergsma E W J, Dada O A, 2023. African coastal camera network efforts at monitoring ocean, climate, and human impacts[J]. Scientific Reports, 13(1): 1514
Almar R, Blenkinsopp C, Almeida L P, Bergsma E W J, Catalan P A, Cienfuegos R, Viet N T, 2019. Intertidal beach profile estimation from reflected wave measurements[J]. Coastal Engineering, 151: 58-63
Almar R, Blenkinsopp C, Almeida L P, Cienfuegos R, Catalán P A, 2017. Wave runup video motion detection using the Radon Transform[J]. Coastal Engineering, 130: 46-51
Almar R, Coco G, Bryan K R, Huntley D A, Short A D, Senechal N, 2008. Video observations of beach cusp morphodynamics[J]. Marine Geology, 254(3): 216-223
Almar R, Larnier S, Castelle B, Scott T, Floc’h F, 2016. On the use of the Radon transform to estimate longshore currents from video imagery[J]. Coastal Engineering, 114: 301-308
Almar R, Michallet H, Cienfuegos R, Bonneton P, Tissier M, Ruessink G, 2014. On the use of the Radon Transform in studying nearshore wave dynamics[J]. Coastal Engineering, 92: 24-30
Andriolo U, 2019. Nearshore Wave Transformation Domains from Video Imagery[J]. Journal of Marine Science and Engineering, 7(6): 186
Andriolo U, Almeida L P, Almar R, 2018. Coupling terrestrial LiDAR and video imagery to perform 3D intertidal beach topography[J]. Coastal Engineering, 140: 232-239
Atkinson A L, Power H E, Moura T, Hammond T, Callaghan D P, Baldock T E, 2017. Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast[J]. Coastal Engineering, 119: 15-31
Balouin Y, B R V, A P A P, 2014. Automatic assessment and analysis of beach attendance using video images at the Lido of Sète beach, France[J]. Ocean & Coastal Management, 102(41): 114-122
Balouin Y, Longueville F, Colombet Y, 2016. Video assessment of nearshore and beach evolution following the deployment of a submerged geotextile wave breaker[J]. Journal of Coastal Research, 75: 617-621
Bevacqua A, Yu D, Zhang Y, 2018. Coastal vulnerability: Evolving concepts in understanding vulnerable people and places[J]. Environmental Science & Policy, 82: 19-29
Borra S, Nair T M B, Jospeh S, Kumar S V V A, Sridevi T, Harikumar R, Srinivas K, Yatin G, Gireesh B, Venkateswararao K, Venkateswarlu Ch, Anjaneyulu A, Prasad K V S R, 2022. Identifying Rip Channels Along RK Beach, Visakhapatnam Using Video and Satellite Imagery Analysis[J]. Journal of the Indian Society of Remote Sensing, 50(8): 1585-1602
Bouvier C, Balouin Y, Castelle B, Holman R, 2019. Modelling camera viewing angle deviation to improve nearshore video monitoring[J]. Coastal Engineering, 147: 99-106
Bujak D, Ilic S, Miličević H, Carevic D, 2023. Wave Runup Prediction and Alongshore Variability on a Pocket Gravel Beach under Fetch-Limited Wave Conditions[J]. Journal of Marine Science and Engineering, 11: 614
Cai F, Cao C, Qi H, Su X, Lei G, Liu J, Zhao S, Liu G, Zhu K, 2022. Rapid migration of mainland China’s coastal erosion vulnerability due to anthropogenic changes[J]. Journal of Environmental Management, 319: 115632
Cai F, Cao H M, Su X Z, Xia D X, 2007. Analysis on Morphodynamics of Sandy Beaches in South China[J]. Journal of Coastal Research, 2007(231): 236-246
Cai F, Liu G, 2019. Development and technological innovation of beach conservation and restoration in China[J]. Journal of Applied Oceanography, 38(4): 452-463
蔡锋, 刘根, 2019. 我国海滩养护修复的发展与技术创新[J]. 应用海洋学学报, 38(4): 452-463
Cai F, Su X Z, Liu J H, Li B, Lei G, 2008. Coastal erosion problems and preventive countermeasures in China in the context of global climate change[J]. Advances in Natural Sciences(10): 1093-1103
蔡锋, 苏贤泽, 刘建辉, 李兵, 雷刚, 2008. 全球气候变化背景下我国海岸侵蚀问题及防范对策[J]. 自然科学进展10: 1093-1103
Cai F, Su X, Liu J, Li B, Lei G, 2009. Coastal erosion in China under the condition of global climate change and measures for its prevention[J]. Progress in Natural Science-Materials International, 19(4): 415-426
Cai F, Yin H, Qi H, Zheng J, Jiang Y, Cao Z, He Y, 2023. Using video imagery to reconstruct the 3D intertidal terrain along a beach with multiple cusps[J]. Acta Oceanologica Sinica, 42(7): 1-9
Caljouw M, 2000. Video-based monitoring of the Egmond beach- and shoreface nourishments: Evaluation of the 1999 nourishments with the help of the Argus video system[J]. Journal of Testing & Evaluation, 14(6): 219-222
Cao Z, Zhang C, Chi S, Zhuang L, Zheng J, 2020. Video-based Monitoring of an Artificial Beach Nourishment Project[J]. Journal of Coastal Research, 95(sp1): 1037-1041
Chi S hang, Zhang C, Sui T ti, Cao Z bin, Zheng J hai, Fan J shan, 2021. Field observation of wave overtopping at sea dike using shore-based video images[J]. Journal of Hydrodynamics, 33(4): 657-672
Chickadel C, Holman R, Freilich M, 2003. An optical technique for the measurement of longshore currents[J]. Journal of Geophysical Research: Oceans, 108
Coco G, Huntley D A, O’Hare T J, 2000. Investigation of a self-organization model for beach cusp formation and development[J]. Journal of Geophysical Research: Oceans, 105(C9): 21991-22002
Daly C, Baba W, Bergsma E, Thoumyre G, Almar R, Garlan T, 2022. The new era of regional coastal bathymetry from space: A showcase for West Africa using optical Sentinel-2 imagery[J]. Remote Sensing of Environment, 278: 113084
Davidson M, Huntley D, Holman R, George K, 1997. The evaluation of large scale (km) intertidal beach morphology on a macrotidal beach using video images[C]//Coastal Dynamics’ 97. ASCE: 385-394
de Silva A, Mori I, Dusek G, Davis J, Pang A, 2021. Automated rip current detection with region based convolutional neural networks[J]. Coastal Engineering, 166: 103859
Defeo O, McLachlan A, Schoeman D S, Schlacher T A, Dugan J, Jones A, Lastra M, Scapini F, 2009. Threats to sandy beach ecosystems: A review[J]. Estuarine Coastal and Shelf Science, 81(1): 1-12
Delgado-Fernandez I, Davidson-Arnott R, Ollerhead J, 2009. Application of a Remote Sensing Technique to the Study of Coastal Dunes[J]. Journal of Coastal Research, 2009(255): 1160-1167
Dérian P, Almar R, 2017. Wavelet-Based Optical Flow Estimation of Instant Surface Currents From Shore-Based and UAV Videos[J]. IEEE Transactions on Geoscience and Remote Sensing, 50: 5790-5797
Domingo M C, 2021. Deep Learning and Internet of Things for Beach Monitoring: An Experimental Study of Beach Attendance Prediction at Castelldefels Beach[J]. Applied Sciences, 11(22): 10735
Epelde I, Liria P, de Santiago I, Garnier R, Uriarte A, Picón A, Galdrán A, Arteche J A, Lago A, Corera Z, Puga I, Andueza J L, Lopez G, 2021. Beach carrying capacity management under Covid-19 era on the Basque Coast by means of automated coastal videometry[J]. Ocean & Coastal Management, 208: 105588
Feng Y J, Han Z, 2012. Cellular automata method for coastline remote sensing information extraction and its application[J]. Journal of Image and Graphics, 17(3): 441-446
冯永玖, 韩震, 2012. 海岸线遥感信息提取的元胞自动机方法及其应用[J]. 中国图象图形学报, 17(3): 441-446
Gallop S L, Bryan K R, Coco G, 2009. Video Observations of Rip Currents on an Embayed Beach[J]. Journal of Coastal Research: 49-53
Gawehn M, de Vries S, Aarninkhof S, 2021. A Self-Adaptive Method for Mapping Coastal Bathymetry On-The-Fly from Wave Field Video[J]. Remote Sensing, 13(23): 4742
Guedes R M C, Calliari L J, Holland K T, Plant N G, Pereira P S, Alves F N A, 2011. Short-term sandbar variability based on video imagery: Comparison between Time–Average and Time–Variance techniques[J]. Marine Geology, 289(1): 122-134
Guest T B, Hay A E, 2019. Timescales of beach cusp evolution on a steep, megatidal, mixed sand-gravel beach[J]. Marine Geology, 416: 105984
Guo J, Shi L, Pan S, Ye Q, Cheng W, Chang Y, Chen S, 2020. Monitoring and evaluation of sand nourishments on an embayed beach exposed to frequent storms in eastern China[J]. Ocean & Coastal Management, 195: 105284
Hage P M, Ruessink B G, Donker J J A, 2018. Determining sand strip characteristics using Argus video monitoring[J]. Aeolian Research, 33: 1-11
Hage P, Ruessink G, Aartrijk Z, Donker J, 2020. Using Video Monitoring to Test a Fetch-Based Aeolian Sand Transport Model[J]. Journal of Marine Science and Engineering, 8: 110
Hage P, Ruessink G, Donker J, 2018. Using Argus Video Monitoring to Determine Limiting Factors of Aeolian Sand Transport on a Narrow Beach[J]. Journal of Marine Science and Engineering, 6: 138
Harley M, Andriolo U, Armaroli C, Ciavola P, 2014. Shoreline rotation and response to nourishment of a gravel embayed beach using a low-cost video monitoring technique: San Michele-Sassi Neri, Central Italy[J]. Journal of Coastal Conservation, 18: 551-565
He Y Y, Liu J H, Cai F, Li B L, Wang L H, Ning Q Q, 2018. Progress of Research on Aeolian Sediment Transport Influenced by Tide[J]. Journal of Desert Research, 38(3): 455-463
何岩雨, 刘建辉, 蔡锋, 李柏良, 王立辉, 宁清钱, 2018. 潮汐作用下的风沙运动过程研究进展[J]. 中国沙漠, 38(3): 455-463
Holland K T, Holman R A, 1993. The statistical distribution of swash maxima on natural beaches[J]. Journal of Geophysical Research. 98: 10271-10278
Holland K T, Holman R A, Lippmann T C, Stanley J, Plant N, 1997. Practical use of video imagery in nearshore oceanographic field studies[J]. IEEE Journal of Oceanic Engineering, 22(1): 81-92
Holland K, Puleo J A, Kooney T N, 2001. Quantification of swash flows using video-based particle image velocimetry[J]. Coastal Engineering, 44: 65-77
Holman R A, 1981. Infragravity energy in the surf zone[J]. Journal Of Geophysical Research [2023-06-02]. doi/10.1029/JC086iC07p06442/abstracthttp://dx.doi.org/10.1029/JC086iC07p06442/abstract
Holman R A, Guza R T, 1984. Measuring run-up on a natural beach[J]. Coastal Engineering, 8(2): 129-140
Holman R A, Stanley J, 2007. The history and technical capabilities of Argus[J]. Coastal Engineering, 54(6): 477-491
Holman R A, Plant N, Holland T, 2013. cBathy: A robust algorithm for estimating nearshore bathymetry[J]. Journal of Geophysical Research: Oceans, 118(5): 2595-2609
Jackson D, Short A, 2020. Sandy Beach Morphodynamics[M]
Jiménez J A, Osorio A, Marino-Tapia I, Davidson M, Medina R, Kroon A, Archetti R, Ciavola P, Aarnikhof S G J, 2007. Beach recreation planning using video-derived coastal state indicators[J]. Coastal Engineering, 54(6): 507-521
Jorge Guillén, Antonio García-Olivares, Ojeda E, Osorio A, Raul González, 2009. Long-Term Quantification of Beach Users Using Video Monitoring[J]. Journal of Coastal Research, 24(Nov 2008): 1612-1619
Kane B, Zajchowski C A B, Allen T R, McLeod G, Allen N H, 2021. Is it safer at the beach? Spatial and temporal analyses of beachgoer behaviors during the COVID-19 pandemic[J]. Ocean & Coastal Management, 205: 105533
Kennedy A B, Dalrymple R A, Kirby J T, Chen Q, 2000. Determination of Inverse Depths Using Direct Boussinesq Modeling[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 126(4): 206-214
Kim J, Kim J, 2020. Estimation of Water Surface Flow Velocity in Coastal Video Imagery by Visual Tracking with Deep Learning[J]. Journal of Coastal Research, 95(sp1): 522-526
Kingston K S, Ruessink B G, van Enckevort I M J, Davidson M A, 2000. Artificial neural network correction of remotely sensed sandbar location[J]. Marine Geology, 169(1): 137-160
Koon W, Brander R W, Dusek G, Castelle B, Lawes J C, 2023. Relationships between the tide and fatal drowning at surf beaches in New South Wales, Australia: Implications for coastal safety management and practice[J]. Ocean & Coastal Management, 238: 106584
Kroon A, Davidson M A, Aarninkhof S G J, Archetti R, Armaroli C, Gonzalez M, Medri S, Osorio A, Aagaard T, Holman R A, Spanhoff R, 2007. Application of remote sensing video systems to coastline management problems[J]. Coastal Engineering, 54(6): 493-505
Li Q Q, Lu Y, Hu S B, Hu Z W, Li H Z, Liu P, Shi T Z, Wang C S, Wang J J, WU G F, 2016. An overview of remote sensing monitoring of geographic environment in coastal zone[J]. National Remote Sensing Bulletin, 20(5): 1216-1229
李清泉, 卢艺, 胡水波, 胡忠文, 李洪忠, 刘鹏, 石铁柱, 汪驰升, 王俊杰, 邬国锋, 2016. 海岸带地理环境遥感监测综述[J]. 遥感学报, 20(5): 1216-1229
Li Y H, Lei G, Cai F, Qi H S, Zhu J, 2019. Research on the impacts of three types of typical coastal engineering on adjacent beaches in China, including hard revetment, fishing harbor engineering and artificial islands[J]. Journal of Applied Oceanography, 38(1): 118-125
黎奕宏, 雷刚, 蔡锋, 戚洪帅, 朱君, 2019. 我国硬式护岸、渔港工程和人工岛等3类典型海岸工程对相邻海滩的影响研究[J]. 应用海洋学学报, 38(1): 118-125
Lippmann T C, Holman R A, 1989. Quantification of sand bar morphology: A video technique based on wave dissipation[J]. Journal of Geophysical Research Oceans, 94(C1) [2023-06-02]. http://dx.doi.org/10.1029/JC094iC01p00995http://dx.doi.org/10.1029/JC094iC01p00995.
Lippmann T C, Holman R A, 1990. The spatial and temporal variability of sand bar morphology[J]. Journal of Geophysical Research: Oceans, 95(C7): 11575-11590
Liu H J, Shi L Q, 2016. ARGUS technology for real-time field video observation of coastal zone[J]. Ocean Engineering, 34(2): 80-87
刘海江, 时连强, 2016. 海岸带实时实地视频观测ARGUS技术[J]. 海洋工程, 34(2): 80-87 DOI:10.16483/j.issn.1005-9865.2016.02.011http://dx.doi.org/10.16483/j.issn.1005-9865.2016.02.011
Liu S, Feng C, Hongshuai Q, Jianhui L, Wei Y, Gen L, 2023. Economic contribution of beach resources and their sustainable development in China[J]. Ocean & Coastal Management, 239: 106598
Lu X, Zhang C, Shi J, Li F M, Zhang Y, 2021. Database and characterization of safety accidents of beach visitors in China[J]. Marine Development and Management, 38(6): 3-11
陆旭, 张弛, 时健, 李方明, 张尧, 2021. 我国海滩游客安全事故数据库和事故特征分析[J]. 海洋开发与管理, 38(6): 3-11 DOI:10.20016/j.cnki.hykfygl.2021.06.001http://dx.doi.org/10.20016/j.cnki.hykfygl.2021.06.001.
Macmahan J, Thornton E, Reniers A, 2006. Rip current review[J]. Coastal Engineering, 53: 191-208
Manning R E, Lswson S R, 2002. Carrying Capacity as “Informed Judgment”: The Values of Science and the Science of Values[J]. Environmental Management, 30(2): 157-168
Mason D C, Davenport I J, Robinson G J, Flather R A, McCartney B S, 1995. Construction of an inter-tidal digital elevation model by the ‘Water-Line’ Method[J]. Geophysical Research Letters, 22(23): 3187-3190
Masselink, G, Austin, M, Scott, T, Poate, Russell, P, 2014. Role of wave forcing, storms and NAO in outer bar dynamics on a high-energy, macro-tidal beach[J]. Geomorphology Amsterdam [2023-06-19]. http://www.ingentaconnect.com/content/el/0169555x/2014/00000226/00000001/art00008http://www.ingentaconnect.com/content/el/0169555x/2014/00000226/00000001/art00008.
McCann M P, Anderson D L, Sherwood C R, Bruder B, Bak A S, Brodie K L, 2022. CoastalImageLib: An open- source Python package for creating common coastal image products[J]. SoftwareX, 20: 101215
McGranahan G, Balk D, Anderson B, 2007. The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones[J]. Environment and Urbanization, 19(1): 17-37
Misra S K, Kennedy A B, Kirby J T, 2003. An approach to determining nearshore bathymetry using remotely sensed ocean surface dynamics[J]. Coastal Engineering, 47(3): 265-293
Mucerino L, Carpi L, Schiaffino C F, Pranzini E, Sessa E, Ferrari M, 2021. Rip current hazard assessment on a sandy beach in Liguria, NW Mediterranean[J]. Natural Hazards, 105(1): 137-156
Nieto M A, Garau B, Balle S, Simarro G, Zarruk G A, Ortiz A, Tintoré J, Álvarez-Ellacuría A, Gómez-Pujol L, Orfila A, 2010. An open source, low cost video-based coastal monitoring system[J]. Earth Surface Processes and Landforms, 35(14): 1712-1719
Osorio A F, Medina R, Gonzalez M, 2012. An algorithm for the measurement of shoreline and intertidal beach profiles using video imagery: PSDM[J]. Computers & Geosciences, 46: 196-207
Pacheco A, Horta J, Loureiro C, Ferreira Ó, 2015. Retrieval of nearshore bathymetry from Landsat 8 images: A tool for coastal monitoring in shallow waters[J]. Remote Sensing of Environment, 159: 102-116
Palmsten M L, Brodie K L, 2022. The Coastal Imaging Research Network (CIRN)[J]. Remote Sensing, 14(3): 453.
Pearre N S, Puleo J A, 2009. Quantifying Seasonal Shoreline Variability at Rehoboth Beach, Delaware, Using Automated Imaging Techniques[J]. Journal of Coastal Research, 2009(254): 900-914
Pereira L C C, Jiménez J A, Medeiros C, Costa R M da, 2003. The influence of the environmental status of Casa Caiada and Rio Doce beaches (NE-Brazil) on beaches users[J]. Ocean & Coastal Management, 46(11): 1011-1030
Perkovic D, Lippmann T, Frasier S J, 2009. Longshore Surface Currents Measured by Doppler Radar and Video PIV Techniques[J]. Geoscience and Remote Sensing, IEEE Transactions on, 47: 2787-2800
Pitman S, Gallop S L, Haigh I D, Mahmoodi S, Masselink G, Ranasinghe R, 2016. Synthetic Imagery for the Automated Detection of Rip Currents[J]. Journal of Coastal Research, 75(sp1): 912-916
Plant N G, Holman R A, 1997. Intertidal beach profile estimation using video images[J]. Marine Geology, 140(1): 1-24
Qi H S, Cai F, Lei G, Cao H M, 2009. Characterization of storm response on beaches in South China[J]. Advances in Natural Science, 19(9): 975-985
戚洪帅, 蔡锋, 雷刚, 曹惠美, 2009. 华南海滩风暴响应特征研究[J]. 自然科学进展, 19(9): 975-985
Qi H S, Cai F, Ren J Y, Zheng L Y, 2010. Reflections on some problems of beach storm effects and research prospects in China[J]. Taiwan Strait, 29(4): 578-588
戚洪帅, 蔡锋, 任建业, 郑连远, 2010. 海滩风暴效应若干问题思考与我国研究前景[J]. 台湾海峡, 29(4): 578-588
Quartel S, Addink E A, Ruessink B G, 2006. Object-oriented extraction of beach morphology from video images[J]. International Journal of Applied Earth Observation & Geoinformation, 8(4): 256-269
Ramesh M, Nair L S, Anoop T R, Prakash T N, 2022. Nearshore wave analysis from coastal video monitoring techniques at high energy micro tidal beach under sunlight dominance conditions: A case study from Valiathura beach in southwest coast of India[J]. Regional Studies in Marine Science, 51: 102205
Rampal N, Shand T, Wooler A, Rautenbach C, 2022. Interpretable Deep Learning Applied to Rip Current Detection and Localization[J]. Remote Sensing, 14(23): 6048
Ranasinghe R, Symonds G, Black K, Holman R, 2004. Morphodynamics of intermediate beaches: a video imaging and numerical modelling study[J]. Coastal Engineering, 51(7): 629-655
Rihouey D, jérémy D, Dailloux D, Morichon D, 2009. Application of remote sensing video systems to coastal defence monitoring[J]. Journal of Coastal Research Journal of Coastal Research SI Journal of Coastal Research SI, 56: 1582-1586
Rodriguez-Padilla I, Castelle B, Marieu V, Morichon D, 2020. A Simple and Efficient Image Stabilization Method for Coastal Monitoring Video Systems[J]. Remote Sensing, 12(1): 70
Rodríguez-Padilla I, Castelle B, Marieu V, Morichon D, 2022. Video-Based Nearshore Bathymetric Inversion on a Geologically Constrained Mesotidal Beach during Storm Events[J]. Remote Sensing, 14(16): 3850
Román-Rivera M A, Ellis J T, 2019. A synthetic review of remote sensing applications to detect nearshore bars[J]. Marine Geology, 408: 144-153
Ruiz de Alegria-Arzaburu A, Masselink G, 2010. Storm response and beach rotation on a gravel beach, Slapton Sands, U.K.[J]. Marine Geology, 278(1): 77-99
Scardino G, Scicchitano G, Chirivì M, Costa P J M, Luparelli A, Mastronuzzi G, 2022. Convolutional Neural Network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring[J]. Remote Sensing, 14(13): 2994
Selvaraju R R, Cogswell M, Das A, Vedantam R, Parikh D, Batra D, 2017. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[C]//2017 IEEE International Conference on Computer Vision (ICCV). 618-626
Sembiring L, Dongeren A van, Winter G, Ormondt M van, Briere C, Roelvink D, 2014. Nearshore bathymetry from video and the application to rip current predictions for the Dutch Coast[J]. Journal of Coastal Research, 70(sp1): 354-359
Shi L Q, Guo J L, Liu H J, Ye Q H, 2019. Progress and prospects of the application of Argus system in beach research in China[J]. Progress in Earth Science, 34(5): 552-560
时连强, 郭俊丽, 刘海江, 叶清华, 2019. Argus系统在我国海滩研究中的应用进展与展望[J]. 地球科学进展, 34(5): 552-560
Silva-Cavalcanti J S, Costa M F, Pereira P S, 2018. Rip currents signaling and users behaviour at an overcrowded urban beach[J]. Ocean & Coastal Management, 155: 90-97
Simarro G, Bryan K R, Guedes R M C, Sancho A, Guillen J, Coco G, 2015. On the use of variance images for runup and shoreline detection[J]. Coastal Engineering, 99: 136-147
Simarro G, Calvete D, 2022. UBathy (v2.0): A Software to Obtain the Bathymetry from Video Imagery[J]. Remote Sensing, 14(23): 6139
Simarro G, Calvete D, Luque P, Orfila A, Ribas F, 2019. UBathy: A New Approach for Bathymetric Inversion from Video Imagery[J]. Remote Sensing, 11(23): 2722
Simarro G, Calvete D, Souto P, 2021. UCalib: Cameras Autocalibration on Coastal Video Monitoring Systems[J]. Remote Sensing, 13(14): 2795
Simarro G, Calvete Manrique D, Souto-Ceccon P, Guillen J, 2020. Camera Calibration for Coastal Monitoring Using Available Snapshot Images[J]. Remote Sensing, 12: 1840
Simarro G, Ribas F, Alvarez A, Guillen J, Chic O, Orfila A, 2017. ULISES: An Open Source Code for Extrinsic Calibrations and Planview Generations in Coastal Video Monitoring Systems[J]. Journal of Coastal Research, 33(5): 1217-1227
Small C, Nicholls R J, 2003. A global analysis of human settlement in coastal zones[J]. Journal of Coastal Research, 19(3): 584-599
Soloy A, Turki I, Lecoq N, Gutiérrez Barceló Á D, Costa S, Laignel B, Bazin B, Soufflet Y, Le Louargant L, Maquaire O, 2021. A fully automated method for monitoring the intertidal topography using Video Monitoring Systems[J]. Coastal Engineering, 167: 103894
Splinter K D, Harley M D, Turner I L, 2018. Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia[J]. Remote Sensing, 10(11): 1744
Stockdon H F, Holman R A, 2000. Estimation of wave phase speed and nearshore bathymetry from video imagery[J]. Journal of Geophysical Research: Oceans, 105(C9): 22015-22033
Stockdon H F, Sallenger A H, List J H, Holman R A, 2002. Estimation of shoreline position and change using airborne topographic lidar data[J]. Journal of Coastal Research, 18(3): 502-513
Stockdon H, Holman R, Howd P, Sallenger A, 2006. Empirical parameterization of setup, swash, and runup[J]. Coastal Engineering, 53: 573-588
Taborda R, Silva A, 2012. COSMOS: A lightweight coastal video monitoring system[J]. Computers & Geosciences, 49: 248-255
Tuijnman J T, Donker J J A, Schwarz C S, Ruessink G, 2020. Consequences of a Storm Surge for Aeolian Sand Transport on a Low-Gradient Beach[J]. Journal of Marine Science and Engineering, 8(8): 584
Turner I, Aarninkhof S, Dronkers T, McGrath J, 2009. CZM Applications of Argus Coastal Imaging at the Gold Coast, Australia[J]. Journal of Coastal Research, 20: 739-752
Uunk L, Wijnberg K M, Morelissen R, 2010. Automated mapping of the intertidal beach bathymetry from video images[J]. Coastal Engineering, 57(4): 461-469
Van Koningsveld M, Davidson M, Huntley D, Medina R, Aarninkhof S, Jiménez J A, Ridgewell J, De Kruif A, 2007. A critical review of the CoastView project: Recent and future developments in coastal management video systems[J]. Coastal Engineering, 54(6-7): 567-576
Vousdoukas M I, 2012. Erosion/accretion patterns and multiple beach cusp systems on a meso-tidal, steeply-sloping beach[J]. Geomorphology, 141-142: 34-46
Vousdoukas M I, Almeida L P M, Ferreira Ó, 2012. Beach erosion and recovery during consecutive storms at a steep-sloping, meso-tidal beach[J]. Earth Surface Processes and Landforms, 37(6): 583-593
Vousdoukas M, Ferreira P, Almeida L P, Dodet G, Psaros F, Andriolo U, Taborda R, Silva A, Ruano A, Ferreira Ó, 2011. Performance of intertidal topography video monitoring of a meso-tidal reflective beach in South Portugal[J]. Ocean Dynamics, 61: 1521-1540
Wilson G W, Özkan-Haller H T, Holman R A, Haller M C, Honegger D A, Chickadel C C, 2014. Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations[J]. Journal of Geophysical Research: Oceans, 119(3): 1993-2016
Yin H, Qi H S, Cai F, Zhang C, Liu G, Zhao S H, Song J C, Zhao G R, 2022. Fine extraction and correction method of sandy coastline from high definition images[J]. Acta Oceanologica Sinica, 44(4): 143-152
尹航, 戚洪帅, 蔡锋, 张弛, 刘根, 赵绍华, 宋嘉诚, 赵国润, 2022. 高分影像砂质海岸线精细提取及校正方法[J]. 海洋学报, 44(4): 143-152
Yu J T, Chen Z S, 2009. Progress of sandy coastal erosion[J]. Tropical Geography, 29(2): 112-118
于吉涛, 陈子燊, 2009. 砂质海岸侵蚀研究进展[J]. 热带地理, 29(2): 112-118
Zhang C, Bu X T, Liu J H, Li Y, Sui T T, Chen D K, 2022. A review of mathematical modeling of coupled evolution of beach-dune system considering water-sand and wind-sand processes[J]. Journal of Hohai University (Natural Sciences), 50(3): 81-90
张弛, 卜鑫涛, 刘建辉, 李元, 隋倜倜, 陈大可, 2022. 考虑水沙和风沙过程的海滩-沙丘系统耦合演变数学模型研究综述[J]. 河海大学学报(自然科学版), 50(3): 81-90
Zhang J X, Liu F, Wang J, 2021. Progress of remote sensing system for lightweight and small-scale unmanned aerial vehicle mapping[J]. National Remote Sensing Bulletin, 25(3): 708-724
张继贤, 刘飞, 王坚, 2021. 轻小型无人机测绘遥感系统研究进展[J]. 遥感学报, 25(3): 708-724
Zhang S P, Zhang C T, 2006. Offshore Video Surveying and Applications[J]. Ocean Technology(1): 11-19
张锁平, 张春田, 2006. 近海视频测量与应用[J]. 海洋技术1: 11-19
Zhang Z Y, 1999. Flexible camera calibration by viewing a plane from unknown orientations[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Kerkyra, Greece: IEEE: 666-673 vol.1[2023-06-18]. http://ieeexplore.ieee.org/document/791289/http://ieeexplore.ieee.org/document/791289/
Zheng J H, Zhang C, 2022. Review of basic theories and key technologies for beach conservation and dynamic geomorphology[J]. Oceanologia Et Limnologia Sinica, 53(4): 791-796
郑金海, 张弛, 2022. 海滩养护动力地貌基础理论与关键技术研究述评[J]. 海洋与湖沼, 53(4): 791-796
Zuo Q H, 2008. Development and application of on-site wave observation technology[J]. Ocean Engineering(2): 124-139 (左其华, 2008. 现场波浪观测技术发展和应用[J]. 海洋工程2: 124-139 DOI:10.16483/j.issn.1005-9865.2008.02.016http://dx.doi.org/10.16483/j.issn.1005-9865.2008.02.016)
相关文章
相关作者
相关机构