集成多源遥感数据的屋顶光伏发电潜力评估
Assessment of rooftop photovoltaic power generation potentials by using multisource remote sensing data
- 2024年28卷第11期 页码:2801-2814
纸质出版日期: 2024-11-07
DOI: 10.11834/jrs.20243440
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-11-07 ,
移动端阅览
姜侯,姚凌,柏永青,周成虎.2024.集成多源遥感数据的屋顶光伏发电潜力评估.遥感学报,28(11): 2801-2814
Jiang H, Yao L, Bai Y Q and Zhou C H. 2024. Assessment of rooftop photovoltaic power generation potentials by using multisource remote sensing data. National Remote Sensing Bulletin, 28(11):2801-2814
屋顶太阳能光伏系统在全球可持续能源转型中扮演着越来越重要的角色;然而屋顶光伏系统的空间分布零散且规模较小,这对于进行准确和精细的区域潜力评估构成了挑战。为应对这一挑战,该研究构建了综合多源遥感数据和人工智能算法的评估框架,结合静止气象卫星影像和深度学习反演模型估算逐小时地表太阳辐射,同时利用高分辨率遥感影像和图像分割模型提取建筑物轮廓,并集成几何光学模型模拟光伏发电过程。该框架能够揭示太阳能资源禀赋时空差异,调查可用屋顶资源总量,并确定米级分辨率以及小时尺度的光伏发电量。江苏省的案例研究验证了该框架在大区域内应用的有效性,展示了其在不同地理位置和多个时间尺度的可扩展性。估算结果显示,江苏省屋顶资源可支撑236.25 GW的光伏装机容量,年发电量可达303.81 TWh,能够满足全省41.1%的社会用电量。这项研究展示了集成多源遥感观测进行屋顶光伏潜力时空评估的可能性,为推动可持续能源转型提供了有力的工具和技术支持。
Rooftop solar photovoltaic (PV) systems are becoming increasingly critical in the global shift toward sustainable energy. Despite their importance
the fragmented and small-scale spatial distribution of rooftop PV systems poses significant challenges to accurate and detailed regional potential assessments. This study aims to deal with these challenges by developing a comprehensive assessment framework that integrates multisource remote sensing data and advanced artificial intelligence algorithms. The objective is to provide a robust methodology for evaluating the potential of rooftop PV systems on a large scale.
The assessment framework developed in this study leverages a combination of geostationary meteorological satellite imagery and deep learning inversion models to estimate hourly surface solar radiation. To accurately extract building outlines
high-resolution remote sensing images are processed using advanced image segmentation models. Furthermore
the framework integrates a geometric optical model to simulate the PV generation process. This holistic approach enables the precise revelation of spatial and temporal variations in solar energy resources. It also facilitates the investigation of the total available rooftop resources and the determination of PV power generation potential at meter-level resolution and hourly scales.
The effectiveness of the framework was validated through a case study conducted in Jiangsu Province
China. The results demonstrated the scalability and applicability of the framework across different geographic locations and multiple temporal scales. The estimation results revealed that rooftop resources in Jiangsu Province could support a PV installed capacity of 236.25 GW
with an annual power generation potential of 303.81 TWh. This substantial output could meet 41.1% of the province’s total electricity consumption. The case study highlights the framework’s ability to provide detailed and accurate assessments of rooftop PV potential on a large scale.
This study illustrates the feasibility and effectiveness of integrating multisource remote sensing observations for the spatiotemporal assessment of rooftop PV potential. The developed framework offers robust tools and technical support for advancing the transition to sustainable energy. By providing insights into the spatial and temporal variability of solar resources
this framework paves the way for the optimized utilization of rooftop PV systems. This research contributes to the broadening effort of achieving sustainable energy goals by enabling more precise and large-scale assessments of rooftop PV potential.
可再生能源屋顶光伏遥感图像分割地表太阳辐射反演碳减排
renewable energyrooftop photovoltaicsremote sensing image segmentationsurface solar radiation inversioncarbon reduction
Bódis K, Kougias I, Jäger-Waldau A, Taylor N and Szabó S. 2019. A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union. Renewable and Sustainable Energy Reviews, 114: 109309 [DOI: 10.1016/j.rser.2019.109309http://dx.doi.org/10.1016/j.rser.2019.109309]
Chen Z L, Wang F and Feng Y F. 2021. Multi-evaluation of PV utilization potential of urban building roof in Guangzhou. Solar Energy, (11): 64-74
陈子龙, 王芳, 冯艳芬. 2021. 以广州市为例的城市建筑屋顶光伏利用潜力的多元评价. 太阳能, (11): 64-74 [DOI: 10.19911/j.1003-0417.tyn20200826.02http://dx.doi.org/10.19911/j.1003-0417.tyn20200826.02]
Gao F, Liu H W, Yang J and Liu W. 2016. Analysis and comparison on plum rain characteristics within Yangtze-Huaihe Region and South Jiangsu Area. Water Resources and Hydropower Engineering, 47(9): 1-4, 10
高菲, 刘宏伟, 杨军, 刘伟. 2016. 江淮及苏南地区梅雨特征分析与比较. 水利水电技术, 47(9): 1-4, 10 [DOI: 10.13928/j.cnki.wrahe.2016.09.001http://dx.doi.org/10.13928/j.cnki.wrahe.2016.09.001]
Gao Y, Gao X and Zhang X H. 2017. The 2 °C global temperature target and the evolution of the long-term goal of addressing climate change—from the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3(2): 272-278 [DOI: 10.1016/J.ENG.2017.01.022http://dx.doi.org/10.1016/J.ENG.2017.01.022]
Gassar A A A and Cha S H. 2021. Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales. Applied Energy, 291: 116817 [DOI: 10.1016/j.apenergy.2021.116817http://dx.doi.org/10.1016/j.apenergy.2021.116817]
Guo H N, Shi Q, Marinoni A, Du B and Zhang L P. 2021. Deep building footprint update network: a semi-supervised method for updating existing building footprint from bi-temporal remote sensing images. Remote Sensing of Environment, 264: 112589 [DOI: 10.1016/j.rse.2021.112589http://dx.doi.org/10.1016/j.rse.2021.112589]
Huld T, Gottschalg R, Beyer H G and Topič M. 2010. Mapping the performance of PV modules, effects of module type and data averaging. Solar Energy, 84(2): 324-338 [DOI: 10.1016/j.solener.2009.12.002http://dx.doi.org/10.1016/j.solener.2009.12.002]
IRENA. 2022. Renewable Capacity Statistics 2022. The International Renewable Energy Agency, Abu Dhabi[EB/OL]. [2023-10-02]. https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022https://www.irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022
Jiang H, Lu N, Huang G H, Yao L, Qin J and Liu H Z. 2020a. Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data. Applied Energy, 270: 115178 [DOI: 10.1016/j.apenergy.2020.115178http://dx.doi.org/10.1016/j.apenergy.2020.115178]
Jiang H, Lu N, Qin J, Tang W J and Yao L. 2019. A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data. Renewable and Sustainable Energy Reviews, 114: 109327 [DOI: 10.1016/j.rser.2019.109327http://dx.doi.org/10.1016/j.rser.2019.109327]
Jiang H, Yang Y P, Wang H Z, Bai Y Q and Bai Y. 2020b. Surface diffuse solar radiation determined by reanalysis and satellite over East Asia: evaluation and comparison. Remote Sensing, 12(9): 1387 [DOI: 10.3390/rs12091387http://dx.doi.org/10.3390/rs12091387]
Lao J Y, Wang C, Zhu X X, Xi X H, Nie S, Wang J L, Cheng F and Zhou G Q. 2021. Retrieving building height in urban areas using ICESat-2 photon-counting LiDAR data. International Journal of Applied Earth Observation and Geoinformation, 104: 102596 [DOI: 10.1016/j.jag.2021.102596http://dx.doi.org/10.1016/j.jag.2021.102596]
Liu M Y, Peng J Q, Xiao R, Chen X, Song M Y, Deng Z and Chen Y X. 2023. Study on deep learning-based roof photovoltaic area identification and photovoltaic power generation potential. Building Science, 39(6): 151-158
刘梦月, 彭佳强, 肖睿, 陈熙, 宋梦宇, 邓章, 陈毅兴. 2023. 基于深度学习的城市屋顶光伏面积识别及光伏发电潜力研究. 建筑科学, 39(6): 151-158 [DOI: 10.13614/j.cnki.11-1962/tu.2023.06.18http://dx.doi.org/10.13614/j.cnki.11-1962/tu.2023.06.18]
Liu T, Yao L, Qin J, Lu N, Jiang H, Zhang F and Zhou C H. 2022a. Multi-scale attention integrated hierarchical networks for high-resolution building footprint extraction. International Journal of Applied Earth Observation and Geoinformation, 109: 102768 [DOI: 10.1016/j.jag.2022.102768http://dx.doi.org/10.1016/j.jag.2022.102768]
Liu Y J, Yao L, Jiang H, Lu N, Qin J, Liu T and Zhou C H. 2022b. Spatial estimation of the optimum PV tilt angles in China by incorporating ground with satellite data. Renewable Energy, 189: 1249-1258 [DOI: 10.1016/j.renene.2022.03.072http://dx.doi.org/10.1016/j.renene.2022.03.072]
Liu Z M, Huang X J, Lu X H, Li S F and Qi X X. 2022. China’s carbon neutrality path prediction under the shared social economic paths. Acta Geographica Sinica, 77(9): 2189-2201
刘泽淼, 黄贤金, 卢学鹤, 李升峰, 漆信贤. 2022. 共享社会经济路径下中国碳中和路径预测. 地理学报, 77(9): 2189-2201 [DOI: 10.11821/dlxb202209004http://dx.doi.org/10.11821/dlxb202209004]
Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles D G, Piles M, Rodríguez-Fernández N J, Zsoter E, Buontempo C and Thépaut J N. 2021. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9): 4349-4383 [DOI: 10.5194/essd-13-4349-2021http://dx.doi.org/10.5194/essd-13-4349-2021]
Narvaez G, Giraldo L F, Bressan M and Pantoja A. 2021. Machine learning for site-adaptation and solar radiation forecasting. Renewable Energy, 167: 333-342 [DOI: 10.1016/j.renene.2020.11.089http://dx.doi.org/10.1016/j.renene.2020.11.089]
NEA. 2021. Notice of publishing the list of pilot projects for distributed rooftop photovoltaic development in the whole county (city or district). [2023-10-02]. http://zfxxgk.nea.gov.cn/2021-09/08/c_1310186582.htmhttp://zfxxgk.nea.gov.cn/2021-09/08/c_1310186582.htm
国家能源局. 2021. 关于公布整县(市、区)屋顶分布式光伏开发试点名单的通知. [2023-10-02]. http://zfxxgk.nea.gov.cn/2021-09/08/c_1310186582.htmhttp://zfxxgk.nea.gov.cn/2021-09/08/c_1310186582.htm
Peters I M, Liu H H, Reindl T and Buonassisi T. 2018. Global prediction of photovoltaic field performance differences using open-source satellite data. Joule, 2(2): 307-322 [DOI: 10.1016/j.joule.2017.11.012http://dx.doi.org/10.1016/j.joule.2017.11.012]
Pfenninger S and Staffell I. 2016. Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy, 114: 1251-1265 [DOI: 10.1016/j.energy.2016.08.060http://dx.doi.org/10.1016/j.energy.2016.08.060]
Shan Y L, Liu J H, Liu Z, Xu X W H, Shao S, Wang P and Guan D B. 2016. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Applied Energy, 184: 742-750 [DOI: 10.1016/j.apenergy.2016.03.073http://dx.doi.org/10.1016/j.apenergy.2016.03.073]
Shi Y L, Li Q Y and Zhu X X. 2020. Building segmentation through a gated graph convolutional neural network with deep structured feature embedding. ISPRS Journal of Photogrammetry and Remote Sensing, 159: 184-197 [DOI: 10.1016/j.isprsjprs.2019.11.004http://dx.doi.org/10.1016/j.isprsjprs.2019.11.004]
Sun Y J, Cui X G, Qi W, Ren X F and Jiang Y T. 2019. Solar potential assessment in buildings based on laser scanning point clouds. Science of Surveying and Mapping, 44(7): 147-151
孙英君, 崔信国, 亓伟, 任晓芳, 江云婷. 2019. 激光雷达数据的建筑物光伏潜力评估. 测绘科学, 44(7): 147-151 [DOI: 10.16251/j.cnki.1009-2307.2019.07.023http://dx.doi.org/10.16251/j.cnki.1009-2307.2019.07.023]
Tong Q X. 2023. Current status and ideas for enhancing the development of remote sensing technology and industrialization in China. Development Research, 40(6): 1-5
童庆禧. 2023. 中国遥感技术和产业化发展现状与提升思路. 发展研究, 40(6): 1-5 [DOI: 10.3969/j.issn.1003-0670.2023.06.003http://dx.doi.org/10.3969/j.issn.1003-0670.2023.06.003]
Walsh B, Ciais P, Janssens I A, Peñuelas J, Riahi K, Rydzak F, van Vuuren D P and Obersteiner M. 2017. Pathways for balancing CO2 emissions and sinks. Nature Communications, 8: 14856 [DOI: 10.1038/ncomms14856http://dx.doi.org/10.1038/ncomms14856]
Wang L L, Ning L, Chen K F, Yan M, Liu J, Liu Z Y, Qin Y M, Xue J and Li C X. 2023. Influence and mechanism of solar radiation intensity on the interdecadal variability of strong Meiyu events during historical periods. Science China Earth Sciences, 66(2): 408-416
王鎏琳, 宁亮, 陈可凡, 严蜜, 刘健, 刘征宇, 覃燕敏, 薛姣, 李楚鑫. 2023. 历史时期太阳辐射强度对强梅雨事件年代际变率的影响及机制. 中国科学: 地球科学, 53(2): 394-402 [DOI: 10.1360/SSTe-2021-0388http://dx.doi.org/10.1360/SSTe-2021-0388]
Yue Z G. 2017. The French Pléiades Neo satellite constellation will reshape the global Earth observation market. Infrared, 38(10): 36
岳桢干. 2017. 法国Pléiades Neo卫星群将重塑全球对地观测市场. 红外, 38(10): 36
Zhang H L, Li L, Xin X Z, Wen J G, Wang B Q, Tang Y, Zhong B, Wu S L, Yu S S and Liu Q H. 2023. A para metric model to estimate photosynthetically active radiation products from synergized GF-1, FY-4 and Himawari-8 data. National Remote Sensing Bulletin, 27(3): 748-757
张海龙, 李丽, 辛晓洲, 闻建光, 王保清, 唐勇, 仲波, 吴善龙, 余珊珊, 柳钦火. 2023. 融合高分一号、风云四号及葵花-8的光合有效辐射遥感方法及产品研究. 遥感学报, 27(3): 748-757 [DOI: 10.11834/jrs.20232474http://dx.doi.org/10.11834/jrs.20232474]
Zhang Q, Xin X Z, Zhang H L, Li Y, Li X J and Yi C X. 2018. Suitability analysis of photovoltaic power plants in China using remote sensing data and multi-criteria evaluation. Journal of Geo-Information Science, 20(1): 119-127
张乾, 辛晓洲, 张海龙, 李月, 李小军, 裔传祥. 2018. 基于遥感数据和多因子评价的中国地区建设光伏电站的适宜性分析. 地球信息科学学报, 20(1): 119-127 [DOI: 10.12082/dqxxkx.2018.170393http://dx.doi.org/10.12082/dqxxkx.2018.170393]
Zhong T, Zhang Z X, Chen M, Zhang K, Zhou Z X, Zhu R, Wang Y J, Lü G N and Yan J Y. 2021. A city-scale estimation of rooftop solar photovoltaic potential based on deep learning. Applied Energy, 298: 117132 [DOI: 10.1016/j.apenergy.2021.117132http://dx.doi.org/10.1016/j.apenergy.2021.117132]
相关作者
相关机构