融合悬浮颗粒物自适应分区的渤海一年生海冰自动检测方法
Automatic detection algorithm of annual sea ice in Bohai Sea incorporating adaptive partitioning of suspended particulate matter
- 2025年 页码:1-19
网络出版:2025-10-28
DOI: 10.11834/jrs.20254378
移动端阅览
网络出版:2025-10-28,
移动端阅览
一年生海冰是中纬度气候变化的重要指示因子,其中厚度小于10 cm的薄冰对气候变化的响应尤为显著。针对渤海高动态悬浮泥沙海域中海冰光谱波动性强、反射率变化显著、薄冰检测难度大的问题,本文提出一种基于光谱形状特征的自适应分区方法,将渤海动态划分为低、高悬浮颗粒物浓度区域。分区后,区域内悬浮颗粒物浓度的异质性显著降低,有效提升了厚度10 cm以下薄冰的可检测性。在此基础上,采用单峰阈值法自动确定分割阈值,并融合边缘特征以增强算法的稳健性。将该方法应用于MODIS、Sentinel-2、GF-1、Sentinel-3及GOCI五种光学影像数据,并利用自然资源部北海预报中心发布的2017-2019年共12景海冰解译图及高分辨率遥感影像样本点进行精度验证。结果表明:该算法分类精度超过90%,适用于多种光学传感器;通过光谱线性混合模型模拟实验进一步证实,该算法能在高动态悬浮泥沙海域有效识别密集度高于30%的一年生海冰。本研究为多源光学遥感数据的业务化海冰监测提供了有效方法支撑。
ObjectiveAnnual sea ice is an important indicator of climate change in mid-latitudes
especially the thin ice with a thickness of less than 10 cm has a more significant response to climate. The Bohai Sea
as a marine system with special research value in the temperate monsoon climate zone and even globally
shows a high degree of sensitivity in its natural ecological and socio-economic systems
and there is a significant bidirectional feedback effect between the sea ice dynamics and the regional climate and human activities. The Bohai Sea is affected by forty runoffs from the Yellow River
Liao River
and Hai River
and the concentration of suspended particulate matter (SPM) in seawater is much higher than that in other sea areas
and the high dynamics of suspended sediment also leads to the complexity of the spectra of sea ice and seawater
which increases the difficulty of accurately detecting the extent of sea ice in the Bohai Sea.MethodIn this study
a segmented processing strategy was employed. Initially
sea ice with a thickness greater than 10 cm was extracted by means of a simple threshold segmentation method. Secondly
in order to address the challenges posed by the high spectral volatility of sea ice and the difficulty in detecting thin ice in the highly dynamic suspended sediment sea area of the Bohai Sea
this study proposes an adaptive partitioning method based on spectral shapes by deeply analysing the spectral characteristics of ice and water in this region. The method is predicated on the dynamic division of the Bohai Sea into regions characterised by low and high suspended particulate matter concentrations. Following this treatment
the spatial heterogeneity of SPM concentration in the region is significantly reduced
thereby effectively improving the detectability of thin ice with a thickness of less than 10 cm. Subsequently
an analysis was conducted on the four bands most commonly employed in optical images
with a view to ascertaining their degree of separability and identifying the preferred segmentation features. The analysis results demonstrate that the blue band and the near-infrared band are the most effective segmentation bands for low and high SPM concentration regions
respectively. The segmentation threshold is determined automatically based on the preferred features using the single-peak threshold method
and the image edge features are fused to enhance the robustness of the algorithm.ResultThe present method is applied to five optical images
MODIS
Sentinel-2
GF-1
Sentinel-3 and GOCI
and the accuracy is verified by using the 12 views of sea ice interpretation maps and sample points of high-resolution remote sensing images for the years 2017-2019 released by the North Sea Forecasting Centre of the Ministry of Natural Resources. The results show that the accuracy of this algorithm can reach more than 90% and is applicable to a variety of optical images; simulation experiments using the spectral linearity mixing model demonstrate that this algorithm is capable of identifying annual sea ice with densities of more than 30% in highly dynamic suspended sediment sea areas.ConclusionThis method can automatically
stably
efficiently and accurately extract annual sea ice
which can be applied to multi-source sensors
and also provides data support for researching climate change by giving full play to the advantages of multi-source remote sensing data for more comprehensive and fine sea ice monitoring.
AghaKouchak A , Chiang F , Huning L S , Love C A , Mallakpour I , Mazdiyasni O , Moftakhari H , Papalexiou S M , Ragno E and Sadegh M . Climate Extremes and Compound Hazards in a Warming World . Annual Review of Earth and Planetary Sciences . 2020 ; 48 ( 1 ): 519 - 548 . [ doi: 10.1146/annurev-earth-071719-055228 http://dx.doi.org/10.1146/annurev-earth-071719-055228 ]
Bai X Z , Wang J , Liu Q Z , Wang D X and Liu Y . Severe Ice Conditions in the Bohai Sea, China, and Mild Ice Conditions in the Great Lakes during the 2009/10 Winter: Links to El Niño and a Strong Negative Arctic Oscillation . Journal of Applied Meteorology and Climatology . 2011 ; 50 ( 9 ): 1922 - 1935 . [ doi: 10.1175/2011jamc2675.1 http://dx.doi.org/10.1175/2011jamc2675.1 ]
Budikova D . Role of Arctic sea ice in global atmospheric circulation: A review . Global and Planetary Change . 2009 ; 68 ( 3 ): 149 - 163 . [ doi: 10.1016/j.gloplacha.2009.04.001 http://dx.doi.org/10.1016/j.gloplacha.2009.04.001 ]
Gu W , Liu C Y , Yuan S , Li N , Chao J L , Li L T and Xu Y J . Spatial distribution characteristics of sea-ice-hazard risk in Bohai, China . Annals of Glaciology . 2017 ; 54 ( 62 ): 73 - 79 . [ doi: 10.3189/2013AoG62A303 http://dx.doi.org/10.3189/2013AoG62A303 ]
Guo W J , Zhang S and Wu G X . Quantitative oil spill risk from offshore fields in the Bohai Sea, China . Sci Total Environ . 2019 ; 688 : 494 - 504 . [ doi: 10.1016/j.scitotenv.2019.06.226 http://dx.doi.org/10.1016/j.scitotenv.2019.06.226 ]
Han Y L , Gao Y , Zhang Y , Wang J and Yang S H . Hyperspectral Sea Ice Image Classification Based on the Spectral-Spatial-Joint Feature with Deep Learning . Remote Sensing . 2019 ; 11 ( 18 ). [ doi: 10.3390/rs11182170 http://dx.doi.org/10.3390/rs11182170 ]
Jiao Y , Huang F , Liu Q R , Li G , Li Y R , Yu Q X and Zhao Y D . Interannual Variability and Scenarios Projection of Sea Ice in Bohai Sea Part I: Variation Characteristics and Interannual Hindcast . Journal of Ocean University of China . 2020 ; 19 ( 2 ): 272 - 280 . [ doi: 10.1007/s11802-020-4236-4 http://dx.doi.org/10.1007/s11802-020-4236-4 ]
Li P. , Ke Y H , Bai J H , Zhang S Y , Chen M M , Zhou D M ( 2019 ). Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data . Marine pollution bulletin , 149 , 110518 .
Li R , Lu Y Y , Hu X M , Guo D L , Zhao P , Wang N , Lee K and Zhang B Y . Space–time variations of sea ice in Bohai Sea in the winter of 2009–2010 simulated with a coupled ocean and ice model . Journal of Oceanography . 2020 ; 77 ( 2 ): 243 - 258 . [ doi: 10.1007/s10872-020-00566-2 http://dx.doi.org/10.1007/s10872-020-00566-2 ]
Li Y W and Yang D Q . Extraction of Bohai Sea ice from MODIS data based on multi-constraint endmembers and linear spectral unmixing . International Journal of Remote Sensing . 2020 ; 41 ( 14 ): 5525 - 5548 . [ doi: 10.1080/01431161.2020.1734248 http://dx.doi.org/10.1080/01431161.2020.1734248 ]
Liu C Y , Gu W , Chao J L , Li L T , Yuan S and Xu Y J . Spatio-temporal characteristics of the sea-ice volume of the Bohai Sea, China, in winter 2009/10 . Annals of Glaciology . 2017 ; 54 ( 62 ): 97 - 104 . [ doi: 10.3189/2013AoG62A305 http://dx.doi.org/10.3189/2013AoG62A305 ]
Liu M J , Dai Y S , Zhang J , Zhang X , Meng J M and Xie Q C . PCA-based sea-ice image fusion of optical data by HIS transform and SAR data by wavelet transform . Acta Oceanologica Sinica . 2015 ; 34 ( 3 ): 59 - 67 . [ doi: 10.1007/s13131-015-0634-7 http://dx.doi.org/10.1007/s13131-015-0634-7 ]
Li N , Xie F , Gu W , Xu Y J , Huang S Q , Yuan S , Cui W J and Levy J . Using remote sensing to estimate sea ice thickness in the Bohai Sea, China based on ice type . International Journal of Remote Sensing . 2009 ; 30 ( 17 ): 4539 - 4552 . [ doi: 10.1080/01431160802592542 http://dx.doi.org/10.1080/01431160802592542 ]
Xu N , Liu X Q , Yuan S , Ma Y X , Shi W Q and Chen W B . Sea ice disaster risk assessment index system based on the life cycle of marine engineering . Natural Hazards . 2018 ; 95 ( 3 ): 445 - 462 . [ doi: 10.1007/s11069-018-3463-0 http://dx.doi.org/10.1007/s11069-018-3463-0 ]
Otsu N . THRESHOLD SELECTION METHOD FROM GRAY-LEVEL HISTOGRAMS . Ieee Transactions on Systems Man and Cybernetics . 1979 ; 9 ( 1 ): 62 - 66 . [ doi: 10.1109/tsmc.1979.4310076 http://dx.doi.org/10.1109/tsmc.1979.4310076 ]
Ouyang L X , Hui F M , Zhu L X , Cheng X , Cheng B , Shokr M , Zhao J C , Ding M and Zeng T . The spatiotemporal patterns of sea ice in the Bohai Sea during the winter seasons of 2000–2016 . International Journal of Digital Earth . 2017 ; 12 ( 8 ): 893 - 909 . [ doi: 10.1080/17538947.2017.1365957 http://dx.doi.org/10.1080/17538947.2017.1365957 ]
Paik S , Min S-K , Kim Y-H , Kim B-M , Shiogama H and Heo J . Attributing Causes of 2015 Record Minimum Sea-Ice Extent in the Sea of Okhotsk . Journal of Climate . 2017 ; 30 ( 12 ): 4693 - 4703 . [ doi: 10.1175/jcli-d-16-0587.1 http://dx.doi.org/10.1175/jcli-d-16-0587.1 ]
Pico T , Mitrovica J X , Ferrier K L and Braun J . Global ice volume during MIS 3 inferred from a sea-level analysis of sedimentary core records in the Yellow River Delta . Quaternary Science Reviews . 2016 ; 152 : 72 - 79 . [ doi: 10.1016/j.quascirev.2016.09.012 http://dx.doi.org/10.1016/j.quascirev.2016.09.012 ]
Stroeve J and Notz D . Changing state of Arctic sea ice across all seasons . Environmental Research Letters . 2018 ; 13 ( 10 ). [ doi: 10.1088/1748-9326/aade56 http://dx.doi.org/10.1088/1748-9326/aade56 ]
Su H and Wang Y P . Using MODIS data to estimate sea ice thickness in the Bohai Sea (China) in the 2009-2010 winter . Journal of Geophysical Research: Oceans . 2012 ;117(C10):. [ doi: 10.1029/2012jc008251 http://dx.doi.org/10.1029/2012jc008251 ]
Su H and Wang Y P and Xiao J and Yan X H . Classification of MODIS images combining surface temperature and texture features using the Support Vector Machine method for estimation of the extent of sea ice in the frozen Bohai Bay, China . International journal of remote sensing , 2015 . 36 ( 10 ): 2734 - 2750 .
Su H , Ji B W and Wang Y P . Sea Ice Extent Detection in the Bohai Sea Using Sentinel-3 OLCI Data . Remote Sensing . 2019 ; 11 ( 20 ). [ doi: 10.3390/rs11202436 http://dx.doi.org/10.3390/rs11202436 ]
Su H , Wang Y P and Yang J X . Monitoring the Spatiotemporal Evolution of Sea Ice in the Bohai Sea in the 2009–2010 Winter Combining MODIS and Meteorological Data . Estuaries and Coasts . 2011 ; 35 ( 1 ): 281 - 291 . [ doi: 10.1007/s12237-011-9425-3 http://dx.doi.org/10.1007/s12237-011-9425-3 ]
Su H , Wang Y P , Xiao J and Li L L . Improving MODIS sea ice detectability using gray level co-occurrence matrix texture analysis method: A case study in the Bohai Sea . ISPRS Journal of Photogrammetry and Remote Sensing . 2013 ; 85 : 13 - 20 . [ doi: 10.1016/j.isprsjprs.2013.07.010 http://dx.doi.org/10.1016/j.isprsjprs.2013.07.010 ]
Tian Y L , Zhang Y , Zhong D Y , Zhang M X , Li T J , Xie D and Wang G Q . Atmospheric Energy Sources for Winter Sea Ice Variability over the North Barents–Kara Seas . Journal of Climate . 2022 ; 35 ( 16 ): 5379 - 5398 . [ doi: 10.1175/jcli-d-21-0652.1 http://dx.doi.org/10.1175/jcli-d-21-0652.1 ]
Walsh J E . Intensified warming of the Arctic: Causes and impacts on middle latitudes . Global and Planetary Change . 2014 ; 117 : 52 - 63 . [ doi: 10.1016/j.gloplacha.2014.03.003 http://dx.doi.org/10.1016/j.gloplacha.2014.03.003 ]
Xie F , Gu W , Ha S , Cui W J , Chen W B , Zhou C G , Huang S Q and Liu Z . An experimental study on the spectral characteristics of one year‐old sea ice in the Bohai Sea, China . International Journal of Remote Sensing . 2007 ; 27 ( 14 ): 3057 - 3063 . [ doi: 10.1080/01431160600589153 http://dx.doi.org/10.1080/01431160600589153 ]
Yan Y , Gu W , Gierisch A M U , Xu Y J and Uotila P . NEMO-Bohai 1.0: a high-resolution ocean and sea ice modelling system for the Bohai Sea, China . Geoscientific Model Development . 2022 ; 15 ( 3 ): 1269 - 1288 . [ doi: 10.5194/gmd-15-1269-2022 http://dx.doi.org/10.5194/gmd-15-1269-2022 ]
Yan Y , Huang K Y , Shao D D , Xu Y J and Gu W . Monitoring the Characteristics of the Bohai Sea Ice Using High-Resolution Geostationary Ocean Color Imager (GOCI) Data . Sustainability . 2019 ; 11 ( 3 ). [ doi: 10.3390/su11030777 http://dx.doi.org/10.3390/su11030777 ]
Yan Y , Uotila P , Huang K Y and Gu W . Variability of sea ice area in the Bohai Sea from 1958 to 2015 . Sci Total Environ . 2020 ; 709 : 136164 . [ doi: 10.1016/j.scitotenv.2019.136164 http://dx.doi.org/10.1016/j.scitotenv.2019.136164 ]
Yan Y , Shao D D , Gu W , Liu C Y , Li Q , Chao J L , Tao J and Xu Y J . Multidecadal anomalies of Bohai Sea ice cover and potential climate driving factors during 1988–2015 . 2017 .
Yu Karpechko A , Andrew Peterson K , Scaife A A , Vainio J and Gregow H . Skilful seasonal predictions of Baltic Sea ice cover . Environmental Research Letters . 2015 ; 10 ( 4 ). [ doi: 10.1088/1748-9326/10/4/044007 http://dx.doi.org/10.1088/1748-9326/10/4/044007 ]
Yu Z Q , Wang T W , Zhang X , Zhang J and Ren P . Locality preserving fusion of multi-source images for sea-ice classification . Acta Oceanologica Sinica . 2019 ; 38 ( 7 ): 129 - 136 . [ doi: 10.1007/s13131-019-1464-2 http://dx.doi.org/10.1007/s13131-019-1464-2 ]
Yuan S , Liu C Y , Liu X Q , Chen Y and Zhang Y J . Research advances in remote sensing monitoring of sea ice in the Bohai sea . Earth Science Informatics . 2021 ; 14 ( 4 ): 1729 - 1743 . [ doi: 10.1007/s12145-021-00683-6 http://dx.doi.org/10.1007/s12145-021-00683-6 ]
Zack G W , Rogers W E and Latt S A . Automatic-measurement of Sister Chromatid Exchange Frequency . Journal of Histochemistry. Journal of Histochemistry & Cytochemistry . 1977 ; 25 ( 7 ): 741 - 753 . [ doi: 10.1177/25.7.70454 http://dx.doi.org/10.1177/25.7.70454 ]
Zeng T , Shi L J , Marko M , Cheng B , Zou J H and Zhang Z P . Sea ice thickness analyses for the Bohai Sea using MODIS thermal infrared imagery . Acta Oceanologica Sinica . 2016 ; 35 ( 7 ): 96 - 104 . [ doi: 10.1007/s13131-016-0908-8 http://dx.doi.org/10.1007/s13131-016-0908-8 ]
Zang J X , Liu J Q , Yin X B , Zeng T , Zhou L . Research on sea ice classification method based on optimal feature set for HY-1C satellite coastal imager images . Acta Oceanologica Sinica , 2022 , 44 ( 05 ): 35 - 46 .
臧金霞 , 刘建强 , 殷晓斌 , 曾韬 , 周磊 . 基于最优特征集的HY-1C卫星海岸带成像仪影像海冰分类方法研究 . 海洋学报 , 2022 , 44 ( 05 ): 35 - 46 .
Zhou Y , Hao Y L , Liu D W , Cui T W , Yu R H and Zhang Z L . Remote sensing inversion of suspended matter mass concentration in the Yellow River Estuary based on Landsat 8 images . Oceanographic research , 2018 , 36 ( 01 ): 35 - 45 .
周媛 , 郝艳玲 , 刘东伟 , 崔廷伟 , 于瑞宏 , 张志磊 . 基于Landsat 8影像的黄河口悬浮物质量浓度遥感反演 . 海洋学研究 , 2018 , 36 ( 01 ): 35 - 45
相关文章
相关作者
相关机构
京公网安备11010802024621
