时序InSAR若尔盖高寒冻融泥炭地形变监测与分析
Deformation Monitoring and Analysis of Zoige Alpine Freeze-Thaw Peatlands Using Time-Series InSAR
- 2025年 页码:1-21
网络出版:2025-10-28
DOI: 10.11834/jrs.20254580
移动端阅览
网络出版:2025-10-28,
移动端阅览
若尔盖湿地分布有欧亚大陆最大的高寒冻融泥炭地,具有重要生态碳汇功能。冻融和碳循环过程均会导致地表形变,开展形变监测与分析可为研究冻融和碳循环过程提供重要依据,但当前对该区域地表形变的研究较为缺乏。本文首次以若尔盖高寒冻融泥炭地为研究区域,先期利用2020年1月至2022年12月间的升降轨Sentinel-1 SAR影像及SBAS-InSAR方法获取其地表形变,结合形变分量建模、趋势检验和地表覆盖类型深入探讨其时空特征、变化趋势及泥炭地健康状况。研究表明,该区域垂直向和东西向形变速率分别在-45 mm/a至45 mm/a和-25 mm/a至25 mm/a之间,呈现出沉降与抬升、线性累积与季节性变化以及垂直与水平形变并存的复杂特征,与冻融、碳循环、地温、降雨等因素密切相关,且不同地类形变趋势差异显著,主要与驱动因素的差异相关。本文首次揭示了若尔盖高寒泥炭地的复杂形变特征、变化趋势及影响因素,可为该区域生态功能与脆弱性评估提供科学参考,同时验证了SBAS-InSAR技术在大尺度冻融泥炭地地表形变监测中的有效性。
1. ObjectiveThe Zoige Wetland covers the largest alpine permafrost peatland in Eurasia
which has an important ecological carbon sink function. Both the freeze-thaw process of permafrost and the carbon cycle of peatlands can cause surface deformation. Monitoring and analyzing deformation can provide important evidence for studying the freeze-thaw and carbon cycle processes. However
current research on surface deformation in this area is relatively scarce. This paper for the first time takes the Zoige peatland as the study area
and the small baseline subset (SBAS) InSAR was used to monitor its deformation. The spatiotemporal characteristics
evolution trends and driving factors of the deformation were comprehensively studied. The health status of peatlands was evaluated
taking into account the deformation distribution and evolution trend.2. MethodThis study obtained 89 ascending and 83 descending Sentinel-1 SAR images from January 2020 to December 2022. The radar line-of-sight (LOS) deformation in the peatland area was extracted by SBAS-InSAR and was verified by comparing with deformation results from the adjacent orbits. The vertical and east-west deformation were obtained by LOS deformation decomposition. The vertical linear cumulative deformation and the seasonal amplitude were extracted by deformation component modeling. At the same time
the historical deformation trend was obtained using the Mann-Kendall trend test and Theil-Sen estimation methods
and the future deformation trend was estimated based on the Hurst index. The spatial and temporal characteristics
change trends of the deformations and health status of the peatland were explored in depth by combining diverse information such as land cover type
surface temperature
and precipitation.3. ResultThe correlation coefficient of the LOS velocity of the overlapping areas between adjacent orbits reaches 0.74
and the root mean square error is ±0.55 mm/a. The vertical and east-west velocity in the study area range from -45 mm/a to 45 mm/a and from -25 mm/a to 25 mm/a
respectively. The vertical deformation is mainly distributed in the peat area being concentrated around the wetlands and water bodies
and the western high-altitude area. The non-peat area in the northwest has relatively obvious eastward deformation affected by elevation and aspect. Seasonal deformation is mostly concentrated in the peat areas
especially around the Cuorewajian Lake and the Manrima Township
with the maximum amplitude of 16.9 mm. The trend test results demonstrate that the areas with significant uplift and subsidence trends account for 51.95% and 26.10% of the total area respectively
while the remaining areas with uplift and subsidence trends account for 8.38% and 5.88% respectively. 75.72% of the area may show anti-continuity trend in the future
and 24.28% of the area may maintain the current trend.4. ConclusionThe deformation of the Zoige peatland exhibits complex characteristics and distribution patterns of subsidence and uplift
linear accumulation and seasonal changes
as well as vertical and horizontal components coexisting. This is mainly related to factors such as freeze-thaw
carbon cycle
land surface temperature
and precipitation. Moreover
the deformation trends of different land types vary significantly
mainly due to the differences in driving factors. Overall
the uplift area of the Zoige peatland is larger than the subsidence area
indicating a good carbon sink function. However
local significant subsidence phenomena occur in areas such as the Cuorewajian Lake surroundings
and are accompanied by a high Hurst index
indicating a significant subsidence persistence. Thus
the peatland in these areas may face up to degradation risks. This study first reveals the complex deformation characteristics
change trends
and influencing factors of the alpine permafrost peatland in Zoige
providing scientific reference for the assessment of ecological functions and vulnerability in this region. It verifies the effectiveness of the SBAS-InSAR technology in monitoring the surface deformation of large-scale permafrost peatlands.
Berardino P , Fornaro G , Lanari R and Sansosti E . 2002 . A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms . IEEE Transactions on Geoscience and Remote Sensing 40 ( 11 ): 2375 - 83 [ DOI: 10.1109/TGRS.2002.803792 http://dx.doi.org/10.1109/TGRS.2002.803792 ]
Bian J H , Li A N and Deng W . 2010 . Estimation and analysis of net primary productivity of Ruoergai wetland in China for the recent 10 years based on remote sensing . Biennial International Conference on Ecological Informatics and Ecosystem Conservation (ISEIS) 2 : 288 - 301 [ DOI: 10.1016/j.proenv.2010.10.035 http://dx.doi.org/10.1016/j.proenv.2010.10.035 ]
Chen X , Li G , Chen Z Q , Ju Q , Zheng L and Cheng X . 2023 . A backscatter coefficient normalization method to incidence angle based on ascending and descending Sentinel-1 SAR imagery at the Greenland . National Remote Sensing Bulletin , 27 ( 9 ): 2072 - 2084
陈晓 , 李刚 , 陈卓奇 , 鞠琦 , 郑雷 , 程晓 . 2023 . 基于升降轨Sentinel-1影像的格陵兰后向散射系数入射角归一化方法 . 遥感学报 , 27 ( 09 ): 2072 - 84 [ DOI: 10.11834/irs.20211243 http://dx.doi.org/10.11834/irs.20211243 ]
Chen Y X , Jiang L M , Liang L L and Zhou ZW . 2019 . Monitoring permarost deformation in the upstream Heihe River, Qilian Mountain by using multitemporal Sentinel-1 InSAR dataset, Chinese J . Geophys(in Chinese) , 62 ( 7 ), 2441 - 2454
陈玉兴 , 江利明 , 梁林林 , 周志伟 . 2019 . 基于Sentinel-1 SAR数据的黑河上游冻土形变时序InSAR监测 . 地球物理学报 , 62 ( 07 ): 2441 - 54 [ DOI: 106038/cjg2019M0255 http://dx.doi.org/106038/cjg2019M0255 ]
De La Barreda-Bautista B , Ledger M J , Sjögersten S , Gee D , Sowter A , Cole B , Page S E , Large D J , Evans C D , Tansey K J , Evers S and Boyd D S . 2024 . Exploring spatial patterns of tropical peatland subsidence in Selangor, Malaysia using the APSIS-DInSAR technique . Remote Sensing 16 ( 12 )[ DOI: 10.3390/rs16122249 http://dx.doi.org/10.3390/rs16122249 ]
Ding Q , Wang F , Huang X , Wang M and Wang Q . 2023 . Monitoring and analysis of surface deformation in songyuan city, jilin province based on time series insar . Journal of the Indian society of remote sensing 51 ( 11 ): 2167 - 85 [ DOI: 10.1007/s12524-023-01746-5 http://dx.doi.org/10.1007/s12524-023-01746-5 ]
Glaser P H , Chanton J , Morin P , Rosenberry D , Siegel D , Ruud O , Chasar L and Reeve A S . 2004 . Surface deformations as indicators of deep ebullition fluxes in a large northern peatland . Global Biogeochemical Cycles 18 ( 1 )[ DOI: 10.1029/2003GB002069 http://dx.doi.org/10.1029/2003GB002069 ]
Guo D and Wang H . 2013 . Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010 . Journal of Geophysical Research: Atmospheres 118 ( 11 ): 5216 - 30 [ DOI: 10.1002/jgrd.50457 http://dx.doi.org/10.1002/jgrd.50457 ]
Guo X J , Du W , Wang X and Yang Z F . 2013 . Degradation and structure change of humic acids corresponding to water decline in Zoige peatland, Qinghai-Tibet Plateau . Science of the Total Environment 445 : 231 - 6 [ DOI: 10.1016/j.scitotenv.2012.12.048 http://dx.doi.org/10.1016/j.scitotenv.2012.12.048 ]
Hou P , Zhai J , Jin D D , Zhou Y , Chen Y and Gao H F . 2022 . Assessment of changes in key ecosystem factors and water conservation with remote sensing in the Zoige . Diversity-Basel 14 ( 7 )[ DOI: 10.3390/d14070552 http://dx.doi.org/10.3390/d14070552 ]
Hoyt A M , Chaussard E , Seppalainen S S and Harvey C F . 2020 . Widespread subsidence and carbon emissions across Southeast Asian peatlands . Nature Geoscience 13 ( 6 ): 435 -+[ DOI: 10.1038/s41561-020-0575-4 http://dx.doi.org/10.1038/s41561-020-0575-4 ]
Hrysiewicz A , Holohan E P , Donohue S and Cushnan H . 2023 . SAR and InSAR data linked to soil moisture changes on a temperate raised peatland subjected to a wildfire . Remote Sensing of Environment 291 [ DOI: 10.1016/j.rse.2023.113516 http://dx.doi.org/10.1016/j.rse.2023.113516 ]
Hurst H E . 1951 . Long-term storage capacity of reservoirs . Transactions of the American society of civil engineers 116 ( 1 ): 770 - 99 [ DOI: 10.1061/TACEAT.0006518 http://dx.doi.org/10.1061/TACEAT.0006518 ]
Khodaei B , Hashemi H , Salimi S and Berndtsson R . 2023 . Substantial carbon sequestration by peatlands in temperate areas revealed by InSAR . Environmental Research Letters 18 [ DOI: 10.1088/1748-9326/acc194 http://dx.doi.org/10.1088/1748-9326/acc194 ]
Lanari R , Casu F , Manzo M , Zeni G , Berardino P , Manunta M and Pepe A . 2007 . An overview of the small baseline subset algorithm: a DInSAR technique for surface deformation analysis . Pure and Applied Geophysics 164 ( 4 ): 637 - 61 [ DOI: 10.1007/s00024-007-0192-9 http://dx.doi.org/10.1007/s00024-007-0192-9 ]
Lang Q , Niu Z G , Hong X Q and Yang X Y . 2021 . Remote sensing monitoring and change analysis of wetlands in the Tibetan Plateau . Geomatics and Information Science of Wuhan University , 46 ( 2 ): 230 - 237
郎芹 , 牛振国 , 洪孝琪 , 杨鑫莹 . 2021 . 青藏高原湿地遥感监测与变化分析 . 武汉大学学报(信息科学版) , 46 ( 02 ): 230 - 7 [ DOI: 10.13203/j.whugis20180277 http://dx.doi.org/10.13203/j.whugis20180277 ]
Li Z W and Gao P . 2020 . Characterizing spatially variable water table depths in a disturbed Zoige peatland watershed . Journal of Hydro-Environment Research 29 : 70 - 9 [ DOI: 10.1016/j.jher.2020.01.004 http://dx.doi.org/10.1016/j.jher.2020.01.004 ]
Liu Z Z , Wang H , Li N , Zhu J , Pan Z W and Qin F . 2020 . Spatial and temporal characteristics and driving forces of vegetation changes in the Huaihe river basin from 2003 to 2018 . Sustainability 12 ( 6 )[ DOI: 10.3390/su12062198 http://dx.doi.org/10.3390/su12062198 ]
Ming Y S , Liu Q H , Bai H and Huang C , 2023 . Classification and change detection of vegetation in the Ruoergai Wetland using optical and SAR remote sensing data . National Remote Sensing Bulletin , 27 ( 6 ): 1414 - 1425
明義森 , 刘启航 , 柏荷 , 黄昌 . 2023 . 利用光学和SAR遥感数据的若尔盖湿地植被分类与变化监测 . 遥感学报 , 27 ( 06 ): 1414 - 25 [ DOI: 1011834/irs.20221767 http://dx.doi.org/1011834/irs.20221767 ]
Qu R , He L , He Z W , Wang B , Lyu P Y , Wang J X , Kang G C and Bai W Q . 2022 . A study of carbon stock changes in the alpine grassland ecosystem of Zoige , China , 2000 - 2020 . Land , 11 ( 8 )[ DOI: 10.3390/land11081232 http://dx.doi.org/10.3390/land11081232 ]
Samieie-Esfahany S , Hanssen R F , Van Thienen-Visser K and Muntendam-Bos A . 2010 . On the effect of horizontal deformation on InSAR subsidence estimates. Paper presented at the Fringe 2009, Proceedings of the workshop Held 30 November-4 December 2009, in Frascati, Italy. Edited by H. Lacoste . ESA-SP Vol . 677[ISBN: 978-92-9221-241 - 4 , 2010, id. 39 ]
Tampuu T , Praks J , Kull A and Ieee . 2020 . InSAR coherence for monitoring water table fluctuations in northern peatlands. Paper presented at the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, Sep 26-Oct 02 [ DOI: 10.1109/IGARSS39084.2020.9323709 http://dx.doi.org/10.1109/IGARSS39084.2020.9323709 ]
Tampuu T , Praks J , Kull A , Uiboupin R , Tamm T and Voormansik K . 2021 . Detecting peat extraction related activity with multi-temporal Sentinel-1 InSAR coherence time series . International Journal of Applied Earth Observation and Geoinformation 98 [ DOI: 10.1016/j.jag.2021.102309 http://dx.doi.org/10.1016/j.jag.2021.102309 ]
Wang C , Zhao W and Cui Y . 2020 . Changes in the seasonally frozen ground over the eastern Qinghai-Tibet Plateau in the past 60 years . Frontiers in Earth Science 8 : 270 [ DOI: 10.3389/feart.2020.00270 http://dx.doi.org/10.3389/feart.2020.00270 ]
Wang F , Ding Q , Zhang L , Wang M and Wang Q . 2019 . Analysis of land surface deformation in Chagan Lake Region using TCPInSAR . Sustainability 11 ( 18 ): 5090 [ DOI: 10.3390/su11185090 http://dx.doi.org/10.3390/su11185090 ]
Wang J F and Xu C D . 2017 . Geodetector: Principle and prospective . Acta Geographica Sinica , 72 ( 01 ): 116 - 34
王劲峰 , 徐成东 . 2017 . 地理探测器:原理与展望 . 地理学报 , 72 ( 01 ): 116 - 34 [ DOI: 10.11821/dlxb201701010 http://dx.doi.org/10.11821/dlxb201701010 ]
Wang Q , Yu W , Xu B and Wei G . 2019 . Assessing the use of GACOS products for SBAS-InSAR deformation monitoring: A case in Southern California . Sensors 19 ( 18 ): 3894 [ DOI: 10.3390/s19183894 http://dx.doi.org/10.3390/s19183894 ]
Wang X , Dang X , Peng H and Zhang H . 2009 . The Theil-Sen estimators in a multiple linear regression model .
Wu C Y , Chen W , Cao C X , Tian R , Liu D and Bao D M . 2018 . Diagnosis of wetland ecosystem health in the Zoige Wetland, Sichuan of China . Wetlands , 38 ( 3 ): 469 - 84 [ DOI: 10.1007/s13157-018-0992-y http://dx.doi.org/10.1007/s13157-018-0992-y ]
Xiang S A , Guo R Q , Wu N and Sun S C . 2009 . Current status and future prospects of Zoige marsh in eastern Qinghai-Tibet Plateau . Ecological Engineering 35 ( 4 ): 553 - 62 [ DOI: 10.1016/j.ecoleng.2008.02.016 http://dx.doi.org/10.1016/j.ecoleng.2008.02.016 ]
Xu J , Morris P J , Liu J and Holden J . 2018 . PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis . CATENA 160 : 134 - 40 [ DOI: 10.1016/j.catena.2017.09.010 http://dx.doi.org/10.1016/j.catena.2017.09.010 ]
Xu Z , Jiang L , Niu F , Guo R , Huang R , Zhou Z and Jiao Z . 2022 . Monitoring regional-scale surface deformation of the continuous permafrost in the qinghai–tibet plateau with time-series InSAR analysis . Remote Sensing 14 ( 13 ): 2987 [ DOI: 10.3390/rs14132987 http://dx.doi.org/10.3390/rs14132987 ]
Yang G , Chen H , Wu N , Tian J , Peng C , Zhu Q , Zhu D , He Y , Zheng Q and Zhang C . 2014 . Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China . Soil Biology and Biochemistry 78 : 83 - 9 [ DOI: 10.1016/j.soilbio.2014.07.013 http://dx.doi.org/10.1016/j.soilbio.2014.07.013 ]
Yu C , Penna N T and Li Z H . 2017 . Generation of real-time mode high-resolution water vapor fields from GPS observations . Journal of Geophysical Research-Atmospheres 122 ( 3 ): 2008 - 25 [ DOI: 10.1002/2016jd025753 http://dx.doi.org/10.1002/2016jd025753 ]
Yu C , Li Z H and Penna N T . 2018 . Interferometric synthetic aperture radar atmospheric correction using a GPS-based iterative tropospheric decomposition model . Remote Sensing of Environment 204 : 109 - 21 [ DOI: 10.1016/j.rse.2017.10.038 http://dx.doi.org/10.1016/j.rse.2017.10.038 ]
Yu C , Li Z H , Penna N T and Crippa P . 2018 . Generic atmospheric correction model for interferometric synthetic aperture radar observations . Journal of Geophysical Research-Solid Earth 123 ( 10 ): 9202 - 22 [ DOI: 10.1029/2017jb015305 http://dx.doi.org/10.1029/2017jb015305 ]
Zhang X H , Liu H Y and Xing Z S . 2010 . Challenges and solutions for sustainable land use in ruoergai-the highest altitude peatland in Qinhai-Tibetan plateau, China. Paper presented at the International Conference on Energy, Environment and Development (ICEED), Kuala Lumpur, MALAYSIA, Dec 08 - 09 [ DOI: 10.1016/j.egypro.2011.03.180 http://dx.doi.org/10.1016/j.egypro.2011.03.180 ]
Zhang Z , Hu C , Wu Z , Zhang Z , Yang S and Yang W . 2023 . Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies . Scientific Reports 13 ( 1 ): 8031 [ DOI: 10.1038/s41598-023-35152-1 http://dx.doi.org/10.1038/s41598-023-35152-1 ]
Zhou W C , Cui L J , Wang Y F , Li W and Kang X M . 2021 . Carbon emission flux and storage in the degraded peatlands of the Zoige alpine area in the Qinghai-Tibetan Plateau . Soil Use and Management 37 ( 1 ): 72 - 82 [ DOI: 10.1111/sum.12660 http://dx.doi.org/10.1111/sum.12660 ]
Zhang Z , Li M , Wen Z , Yin Z , Tang Y , Gao S and Wu Q . 2023 . Degraded frozen soil and reduced frost heave in China due to climate warming . Science of the Total Environment 893 : 164914 [ DOI: 10.1016/j.scitotenv.2023.164914 http://dx.doi.org/10.1016/j.scitotenv.2023.164914 ]
Zhang Z Q , Zhao T J , Shi J C , Li Y L , Ran Y H , Chen Y Y , Zhao S J , Wang J , Ning Z Y , Yang H L and Han D . 2020 . Near-surface freeze/thaw state mapping over Tibetan Plateau . Journal of Remote Sensing(Chinese) , 24 ( 7 ): 904 - 916
张子谦 , 赵天杰 , 施建成 , 李玉霖 , 冉有华 , 陈莹莹 , 赵少杰 , 王健 , 宁志英 , 杨红玲 , 韩丹 . 2020 . 青藏高原地区近地表冻融状态判别算法研究 . 遥感学报 , 24 ( 07 ): 904 - 16 [ DOI: 10.11834/jrs.20209293 http://dx.doi.org/10.11834/jrs.20209293 ]
相关作者
相关机构
京公网安备11010802024621
