联合中心差异特征和空谱注意力的高光谱图像变化检测方法
Joint Central Difference Feature and Spatial Spectral Attention Hyperspectral Image Change Detection Method
- 2025年 页码:1-13
收稿:2025-01-08,
网络出版:2025-10-28
DOI: 10.11834/jrs.20255012
移动端阅览
收稿:2025-01-08,
网络出版:2025-10-28,
移动端阅览
多时相高光谱图像因其丰富的光谱波段和图像细节,在变化检测中具有广泛的应用。基于监督学习的高光谱变化检测算法往往依赖于大量的标记样本,这导致了高昂的标注成本。本文提出了一种联合中心差异特征和空谱注意力的网络(Joint Central Difference Features and Spectral-Spatial Attention Network,JCDS
2
AN)用于高光谱图像变化检测,该网络可以缓解样本受限下的变化特征波动,利用有限的标记样本学习到具有代表性的变化特征。在JCDS
2
AN网络中,设计了多尺度空谱注意力块来捕获空间和光谱的多尺度特征,同时提出一种差异特征引导的差分中心像素交换策略,以实现差异特征和两时相特征的高效信息交互。在三个公开数据集上的可视化和定量实验结果表明,所提出的JCDS
2
AN优于其他先进的
高光谱变化检测方法。
Multi-temporal hyperspectral images have a wide range of applications in change detection due to their rich spectral features and image details. Traditional hyperspectral change detection algorithms based on supervised learning often rely on a large number of labeled samples
which requires a large sample annotation cost. In recent years
although research has explored the problem of change detection under limited labeled samples
there are still many aspects that need further exploration. Existing methods often fail to fully tap into the potential of limited labeled samples
and there are also shortcomings in extracting changing features. Therefore
we have developed a new network architecture aimed at more effectively utilizing limited labeled samples and focusing on extracting differential features to enhance information related to changes.In this paper
we propose a joint central difference feature and spatial-spectral attention network (JCDS
2
AN) for hyperspectral image change detection
which can alleviate the fluctuation of changing features under sample constraints and learn representative changing features using limited labeled samples. In JCDS
2
AN
a multi-scale spatial-spectral attention block was designed to capture multi-scale spatial and spectral features
and a differential center pixel exchange strategy guided by differential features was proposed to achieve efficient information exchange between differential features and two temporal features.Experimental results on three publicly available hyperspectral image datasets show that the proposed JCDS
2
AN outperforms the state-of-the-art methods in hyperspectral change detection. When utilizing only 1% of the training samples
the method achieved optimal Kappa and OA of 95.90% and 98.30%
respectively
on the Farmland dataset. Ablation experiments were conducted for each proposed module to demonstrate their effectiveness. This approach is
capable of extracting discriminative deep change semantic information
with both qualitative and quantitative results surpassing those of other advanced networks.
JATURAPITPORNCHAI R , MATSUOKA M , KANEMOTO N , et al . Newly Built Construction Detection in SAR Images Using Deep Learning [J ] . Remote Sensing , 2019 , 11 ( 12 ): 1444 .
KHAN S H , He X , F.PORIKLI F , et al . Forest Change Detection in Incomplete Satellite Images With Deep Neural Networks [J ] . IEEE Geoscience and Remote Sensing Letters , 2017 , 55 ( 9 ): 5407 - 5423 .
JI M , LIU L , DU R , et al . A Comparative Study of Texture and Convolutional Neural Network Features for Detecting Collapsed Buildings After Earthquakes Using Pre- and Post-Event Satellite Imagery [J ] . Remote Sensing , 2019 , 11 ( 10 ), 1202 .
LI F , ZHOU F , ZHANG G , et al . HSAA-CD: A Hierarchical Semantic Aggregation Mechanism and Attention Module for Non-Agricultural Change Detection in Cultivated Land [J ] . Remote Sensing , 2024 ; 16 ( 8 ): 1372 .
ZHANG L P , WU C . Advance and future development of change detection for multi-temporal remote sensing imagery [J ] . Acta Geodaetica et Cartographica Sinica , 2017 , 46 ( 10 ): 1447 - 1459 .
张良培 , 武辰 . 多时相遥感影像变化检测的现状与展望 [J ] . 测绘学报 , 2017 , 46 ( 10 ): 1447 - 1459 .
HASANLOU M , SEYDI S T . Hyperspectral change detection: an experimental comparative study [J ] . International Journal of Remote Sensing , 2018 , 39 ( 20 ): 7029 - 7083 .
BOVOLO F , BRUZZONE L . A Theoretical Framework for Unsupervised Change Detection Based on Change Vector Analysis in the Polar Domain [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2007 , 45 ( 1 ): 218 - 236 .
CELIK T . Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering [J ] . IEEE Geoscience and Remote Sensing Letters , 2009 , 6 ( 4 ): 772 - 776 .
AAPO H , ERKKI O . Independent Component Analysis: Algorithms and Applications [J ] . Elsevier Science Ltd. , 2000 ( 4 ).
ALLAN A N , KNUT C , JAMES J S . Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies [J ] . Remote Sensing of Environment , 1998 , 64 ( 1 ): 1 - 19 .
WU C , DU B , ZHANG L . Slow Feature Analysis for Change Detection in Multispectral Imagery [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2014 , 52 ( 5 ): 2858 - 2874 .
TENINDRA A , MUHAMMAD A C , DAVID T . k-Nearest Neighbors on Road Networks: A Journey in Experimentation and In-Memory Implementation [J ] . Proceedings of the VLDB Endowment , 2016 , 9 ( 6 ): 2150 - 8097 .
CORINN A , VLADIMIR V . Support-Vector Networks [J ] . Machine Learning , 1995 , 20 ( 3 ): 273 - 297 .
LAZHAR K , MAX M . Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis [J ] . IEEE Access , 2020 , 8 : 126385 - 126400 .
WANG Q , YUAN Z , DU Q , et al . GETNET: A General End-to-End 2-D CNN Framework for Hyperspectral Image Change Detection [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 1 ): 3 - 13 .
LIN Y , LI S T , Fang L Y , et al . Multispectral Change Detection With Bilinear Convolutional Neural Networks [J ] . IEEE Geoscience and Remote Sensing Letters , 2020 , 17 ( 10 ): 1757 - 1761 .
MOU L C , BRUZZONE L , ZHU X X . Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2019 , 57 ( 2 ): 924 - 935 .
CHEN H , WU C , DU B , et al . Change Detection in Multisource VHR Images via Deep Siamese Convolutional Multiple-Layers Recurrent Neural Network [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2020 , 58 ( 4 ): 2848 - 2864 .
JIANG H W , HU X Y , LI K , et al . PGA-SiamNet: Pyramid Feature-Based Attention-Guided Siamese Network for Remote Sensing Orthoimagery Building Change Detection [J ] . Remote Sensing , 2020 , 12 ( 3 ): 484 .
QU J H , S.HOU S X , DONG W Q , et al . A Multilevel Encoder–Decoder Attention Network for Change Detection in Hyperspectral Images [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 13 .
LUO F L , ZHOU T Y , LIU J M , et al . Multiscale Diff-Changed Feature Fusion Network for Hyperspectral Image Change Detection [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2023 , 61 : 1 - 13 .
YANG B , MAO Y , CHEN J , et al . Review of Remote Sensing Change Detection in Deep Learning:Bibliometric and Analysis . National Remote Sensing Bulletin , 2023 , 27 ( 09 ): 1988 - 2005 .
杨彬 , 毛银 , 陈晋 , 等 . 深度学习的遥感变化检测综述:文献计量与分析 [J ] . 遥感学报 , 2023 , 27 ( 09 ): 1988 - 2005 .
GONG M G , JIANG F L , QIN A K , et al . A Spectral and Spatial Attention Network for Change Detection in Hyperspectral Images [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 14 .
QU J H , XU Y S , DONG W Q , et al . Dual-Branch Difference Amplification Graph Convolutional Network for Hyperspectral Image Change Detection [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 12 .
SONG R X , NI Q H , CHENG W , et al . Cross-Temporal Interaction Symmetric Attention Network for Hyperspectral Image Change Detection [J ] . IEEE Geoscience and Remote Sensing Letters , 2022 , 19 : 1 - 5 .
WANG Y H , HONG D F , SHA J J , et al . Spectral-Spatial-Temporal Transformers for Hyperspectral Image Change Detection [J ] . IEEE Transactions on Geoscience and Remote Sensing , 2022 , 60 : 1 - 14 .
DING J G , LI X R , ZHAO L Y . CDFormer: A Hyperspectral Image Change Detection Method Based on Transformer Encoders [J ] . IEEE Geoscience and Remote Sensing Letters , 2022 , 19 : 1 - 5 .
HU M Q , WU C , ZHANG L P . GlobalMind: Global Multi-head Interactive Self-attention Network for Hyperspectral Change Detection [J ] . ISPRS Journal of Photogrammetry and Remote Sensing , 2024 , 465 - 483 .
LIU R , LEHMAN J , MOLINO P , et al . An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solutions [C ] //. IEEE/CVF Neural Information Processing Systems (NIPS): IEEE , 2018 , 12 : 9628 - 9639 .
SHAW P , USZKOREIT J , VASWANI A . Self-Attention with Relative Position Representations [J ] . North American Chapter of the Association for Computational Linguistics , 2018 . 18 : 464 - 468 .
DOSOVITSKIY A , BEYER L , KOLESNIKOV A , et al . An image is worth 16x16 words: Transformers for image recognition at scale [J ] . 2020 .
CHOLLET F . Xception: Deep Learning with Depthwise Separable Convolutions [C ] //. IEEE/CVF IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , 2017 , 1800 - 1807 .
KHELIFI L , MIGNOTTE M . Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis [J ] . IEEE Access , 2020 , 8 : 126385 - 126400 .
相关作者
相关机构
京公网安备11010802024621
