中尺度涡调制下全球海洋遥感特征相关性分析
Correlation analysis of the sea surface features under eddy modulation in the global ocean using remote sensing data
- 2024年28卷第8期 页码:2002-2013
收稿:2022-01-04,
纸质出版:2024-08-07
DOI: 10.11834/jrs.20231830
移动端阅览
收稿:2022-01-04,
纸质出版:2024-08-07
移动端阅览
本文旨在探寻反气旋性涡旋(AE)、气旋性涡旋(CE)调制下海表特征的相关性分布及其与涡旋外部(OE)区域的差异,为进一步厘清中尺度涡对海气界面的调制机制,改进海洋数值模拟提供理论依据。本文利用2010年—2019年长时序遥感观测数据以及皮尔逊积距相关系数、涡旋识别等方法,系统分析了全球中尺度涡调制下海表温度异常、海面高度异常、叶绿素浓度异常、风速异常4种参数相关性的时空分布特征及其差异。结果表明各参数之间相关性分布赤道太平洋地区相关性最强,印度洋地区以及北美洲西南岸相关性较为显著,其他地区相关性偏弱,且各参数分布呈现出较强的涡旋信号。此外,各参数的相关系数在OE中相比于CE以及AE内部降低0.2左右,相关系数分布的平滑程度约为AE与CE中相关系数分布的20倍,且相关性相反两区域之间存在明显的过渡区域。可以得出结论中尺度涡调制下各参数的相关性分布表现很强的地域特征,其差异主要表现在相关程度以及整体平滑性方面。
Mesoscale eddies are broadly distributed in the global ocean and have significant effects on the Sea Surface Temperature (SST)
Sea Surface Height (SSH)
Chlorophyll (Chl)
Wind Speed (WS)
and other ocean parameters. Accordingly
the coupling analysis of mesoscale eddies and ocean key parameters is an important aspect of ocean research. The Anti-cyclonic Eddy (AE)
Cyclonic Eddy (CE)
and Outside Eddy (OE) can be better distinguished with the realization of the individual eddy identification technology. Accordingly
we can comprehensively study the distribution and difference of correlation of sea surface features by comparing OE with AE and CE
providing a theoretical basis for further clarifying the modulation mechanism of the mesoscale eddy on the air‒sea interface and improving ocean numerical simulation. This study calculated the Pearson correlation coefficient using Sea Surface Temperature Anomaly (SSTA)
Sea Level Anomaly (SLA)
Chlorophyll Anomaly (CHLA)
and Wind Speed Abnormal (WSA) data from 2010 to 2019 through distinguishing AE
CE
and OE and compared the smoothness of the correlation coefficient. Results show that the correlation distribution among the parameters has significant regional characteristics. In CE and AE
the correlation is ±0.5 in most areas of the ocean and ±0.7 in the Northern Indian Ocean and the Equatorial Pacific. In OE
the correlation is ±0.2 in most regions and ±0.4 in the Northern Indian Ocean and the Equatorial Pacific. In addition
when a positive (negative) correlation occurs in OE
it generally shows a large range of positive (negative) correlation
and a noticeable transition region exists between the two. However
the extreme correlation regions are smaller and mainly present as scattered points under the influence of eddy
and the transition regions between the positive and the negative regions are narrow. The smoothness coefficient of the correlation coefficient of each parameter in OE is about 15
while those of AE and CE is about 450
which is much lower than that in the OE area. We conclude that the influence of eddy on the correlation of each parameter is mainly reflected in the value
distribution
and smoothness of the correlation coefficient. The correlation coefficient of each parameter in OE is about 0.2 lower than that in CE and AE
and the smoothness of the correlation coefficient in OE is about 30 times that in AE and CE. The correlation distribution also has a strong point feature in the original distribution mode due to the modulation of the eddy.
Chelton D B , Gaube P , Schlax M G , Early J J and Samelson R M . 2011a . The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll . Science , 334 ( 6054 ): 328 - 332 [ DOI: 10.1126/science.1208897 http://dx.doi.org/10.1126/science.1208897 ]
Chelton D B , Schlax M G , Samelson R M and De Szoeke R A . 2007 . Global observations of large oceanic eddies . Geophysical Research Letters , 34 ( 15 ): L 15606 [ DOI: 10.1029/2007GL030812 http://dx.doi.org/10.1029/2007GL030812 ]
Chelton D B , Schlax M G and Samelson R M . 2011b . Global observations of nonlinear mesoscale eddies . Progress in Oceanography , 91 ( 2 ): 167 - 216 [ DOI: 10.1016/j.pocean.2011.01.002 http://dx.doi.org/10.1016/j.pocean.2011.01.002 ]
Chen G and Han G Y . 2019 . Contrasting short-lived with long-lived mesoscale eddies in the global ocean . Journal of Geophysical Research: Oceans , 124 ( 5 ): 3149 - 3167 [ DOI: 10.1029/2019JC014983 http://dx.doi.org/10.1029/2019JC014983 ]
Chen G , Yang J , Tian F L , Chen S G , Zhao C F , Tang J W , Liu Y J , Wang Y N , Yuan Z H , He Q and Cao C C . 2021 . Remote sensing of oceanic eddies: progresses and challenges . National Remote Sensing Bulletin , 25 ( 1 ): 302 - 322
陈戈 , 杨杰 , 田丰林 , 陈树果 , 赵朝方 , 唐军武 , 刘颖洁 , 王祎诺 , 苑忠浩 , 何遒 , 曹川川 . 2021 . 海洋涡旋遥感: 进展与挑战 . 遥感学报 , 25 ( 1 ): 302 - 322 [ DOI: 10.11834/jrs.20210400 http://dx.doi.org/10.11834/jrs.20210400 ]
Chen X Y , Li H T , Cao C C and Chen G . 2021 . Eddy-induced pycnocline depth displacement over the global ocean . Journal of Marine Systems , 221 : 103577 [ DOI: 10.1016/j.jmarsys.2021.103577 http://dx.doi.org/10.1016/j.jmarsys.2021.103577 ]
Cheng X H and Qi Y Q . 2010 . Variations of eddy kinetic energy in the South China Sea . Journal of Oceanography , 66 ( 1 ): 85 - 94 [ DOI: 10.1007/s10872-010-0007-y http://dx.doi.org/10.1007/s10872-010-0007-y ]
Ferrari R and Wunsch C . 2010 . The distribution of eddy kinetic and potential energies in the global ocean . Tellus A , 62 ( 2 ): 92 - 108 [ DOI: 10.1111/j.1600-0870.2009.00432.x http://dx.doi.org/10.1111/j.1600-0870.2009.00432.x ]
Frenger I , Gruber N , Knutti R and Münnich M . 2013 . Imprint of southern ocean eddies on winds, clouds and rainfall . Nature Geoscience , 6 ( 8 ): 608 - 612 [ DOI: 10.1038/ngeo1863 http://dx.doi.org/10.1038/ngeo1863 ]
Gaube P , Chelton D B , Strutton P G and Behrenfeld M J . 2013 . Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies . Journal of Geophysical Research: Oceans , 118 ( 12 ): 6349 - 6370 [ DOI: 10.1002/2013JC009027 http://dx.doi.org/10.1002/2013JC009027 ]
Gaube P , McGillicuddy D J , Chelton D B , Behrenfeld M J and Strutton P G . 2014 . Regional variations in the influence of mesoscale eddies on near-surface chlorophyll . Journal of Geophysical Research: Oceans , 119 ( 12 ): 8195 - 8220 [ DOI: 10.1002/2014JC010111 http://dx.doi.org/10.1002/2014JC010111 ]
Kahru M , Gille S T , Murtugudde R , Strutton P G , Manzano-Sarabia M , Wang H and Mitchell B G . 2010 . Global correlations between winds and ocean chlorophyll . Journal of Geophysical Research: Oceans , 115 ( C12 ): C 12040 [ DOI: 10.1029/2010JC006500 http://dx.doi.org/10.1029/2010JC006500 ]
Klein P and Lapeyre G . 2009 . The oceanic vertical pump induced by mesoscale and submesoscale turbulence . Annual Review of Marine Science , 1 ( 1 ): 351 - 375 [ DOI: 10.1146/annurev.marine.010908.163704 http://dx.doi.org/10.1146/annurev.marine.010908.163704 ]
Liu Y J , Chen G , Sun M , Liu S and Tian F L . 2016 . A parallel SLA-based algorithm for global mesoscale eddy identification . Journal of Atmospheric and Oceanic Technology , 33 ( 12 ): 2743 - 2754 [ DOI: 10.1175/JTECH-D-16-0033.1 http://dx.doi.org/10.1175/JTECH-D-16-0033.1 ]
Liu Y J , Tian F L and Chen G . 2020 . Statistical characterization of sea surface temperature over mesoscale eddies in the South China Sea . Periodical of Ocean University of China , 50 ( 5 ): 146 - 156
刘颖洁 , 田丰林 , 陈戈 . 2020 . 南海中尺度涡旋海表温度特征统计研究 . 中国海洋大学学报 , 50 ( 5 ): 146 - 156 [ DOI: 10.16441/j.cnki.hdxb.20190070 http://dx.doi.org/10.16441/j.cnki.hdxb.20190070 ]
Ni Q B , Zhai X M , Jiang X M and Chen D K . 2021 . Abundant cold anticyclonic eddies and warm cyclonic eddies in the global ocean . Journal of Physical Oceanography , 51 ( 9 ): 2793 - 2806 [ DOI: 10.1175/JPO-D-21-0010.1 http://dx.doi.org/10.1175/JPO-D-21-0010.1 ]
Park J E , Park K A , Kang C K and Park Y J . 2020 . Short-term response of chlorophyll- a concentration to change in sea surface wind field over mesoscale eddy . Estuaries and Coasts , 43 ( 3 ): 646 - 660 [ DOI: 10.1007/s12237-019-00643-w http://dx.doi.org/10.1007/s12237-019-00643-w ]
Siegel D A , Peterson P , Mcgillicuddy D J , Maritorena S and Nelson N B . 2011 . Bio-optical footprints created by mesoscale eddies in the Sargasso sea . Geophysical Research Letters , 38 ( 13 ): L 13608 [ DOI: 10.1029/2011GL047660 http://dx.doi.org/10.1029/2011GL047660 ]
Sun B W , Liu C Y and Wang F . 2020 . Eddy induced SST variation and heat transport in the western North Pacific Ocean . Journal of Oceanology and Limnology , 38 ( 1 ): 1 - 15 [ DOI: 10.1007/s00343-019-8255-1 http://dx.doi.org/10.1007/s00343-019-8255-1 ]
Sun S W , Fang Y , Liu B C and Tana . 2016 . Coupling between SST and wind speed over mesoscale eddies in the South China Sea . Ocean Dynamics , 66 ( 11 ): 1467 - 1474 [ DOI: 10.1007/s10236-016-0993-4 http://dx.doi.org/10.1007/s10236-016-0993-4 ]
Uz B M and Yoder J A . 2004 . High frequency and mesoscale variability in SeaWiFS chlorophyll imagery and its relation to other remotely sensed oceanographic variables . Deep Sea Research Part II: Topical Studies in Oceanography , 51 ( 10/11 ): 1001 - 1017 [ DOI: 10.1016/j.dsr2.2004.03.003 http://dx.doi.org/10.1016/j.dsr2.2004.03.003 ]
Zhang T , Ping X J and Xu C Y . 2006 . Detection algorithm for spatial LSB embedding based on image smoothness . Journal of Computer-Aided Design and Computer Graphics , 18 ( 10 ): 1607 - 1612
张涛 , 平西建 , 徐长勇 . 2006 . 基于图像平滑度的空域LSB嵌入的检测算法 . 计算机辅助设计与图形学学报 , 18 ( 10 ): 1607 - 1612 [ DOI: 10.3321/j.issn:1003-9775.2006.10.025 http://dx.doi.org/10.3321/j.issn:1003-9775.2006.10.025 ]
Zhao D D , Xu Y S , Zhang X G and Huang C . 2021 . Global chlorophyll distribution induced by mesoscale eddies . Remote Sensing of Environment , 254 : 112245 [ DOI: 10.1016/j.rse.2020.112245 http://dx.doi.org/10.1016/j.rse.2020.112245 ]
Zheng X L , Dong Q and Fan X . 2020 . Characteristics of sea surface temperature and Chlorophyll concentration inside mesoscale eddies in the North Pacific Ocean . Journal of Remote Sensing (in Chinese) , 24 ( 1 ): 85 - 96
郑晓莉 , 董庆 , 樊星 . 2020 . 北太平洋中尺度涡海表温度和叶绿素浓度特征分析 . 遥感学报 , 24 ( 1 ): 85 - 98 [ DOI: 10.11834/jrs.20208215 http://dx.doi.org/10.11834/jrs.20208215 ]
相关作者
相关机构
京公网安备11010802024621
