Aerosol comprehensive observation and analysis in Nanjing area
- Vol. 21, Issue 1, Pages: 125-135(2017)
Published: 2017-1
DOI: 10.11834/jrs.20175328
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 2017-1 ,
扫 描 看 全 文
He WANG, Nianwen CAO, Peng WANG, et al. Aerosol comprehensive observation and analysis in Nanjing area. [J]. Journal of Remote Sensing 21(1):125-135(2017)
利用CE-318太阳光度计、MPL激光雷达与卫星观测数据,分别采用光谱消光法、Fernald方法以及MODIS暗像元法(DDV)反演南京地区气溶胶光学厚度,并进行了对比分析。通过研究分析3月3日、6日卫星反演气溶胶光学厚度的空间分布图,发现长江流域附近以及市区(除老山、中山陵等山区地带之外)的AOD较高。3月3日太阳光度计、激光雷达与卫星数据在站点位置(南京信息工程大学,118.7°E,32.2°N)的AOD值分别为0.455、0.289、0.4;3月6日的AOD值分别为0.373、0.267、0.25。通过对比分析3月至9月之间的多天数据,可得3种数据计算所得AOD相差不大,说明卫星与激光雷达反演数据相对可靠。其中,3月3日与3月6日的太阳光度计数据显示,观测地区出现常见的两种AOD变化类型:一种是早晚高,中午低;一种是早低晚高。此外,激光雷达所得数据结果随着时间的变化幅度较大,且可以在有云的天气条件下探测气溶胶;本文利用激光雷达数据计算出的9 km以下AOD值多数在0.3左右,3月3日与3月6日两天之中,2 km以下较脏,出现了一些气溶胶层,6 km以上相对比较干净,个别时段6 km以上高空存在云层。与地基观测相比,卫星虽然时间分辨率虽然低,但是对于大面积的趋势分析却有着绝对的优势。在今后的气溶胶观测发展中,结合三者的优势,有助于以较高精度,大面积反演大气气溶胶空间分布情况,获得较准确的气溶胶参数。
We use CE-318 sun photometer
MPL lidar
and satellite to measure aerosols in Nanjing and employ the spectral light extinction method
Fernald method
and MODIS dark dense vegetation method
respectively
to calculate Aerosol Optical Depth(AOD).The spatial distribution maps of AOD from satellite shows that AOD is higher in March 3 and 6 in the vicinity of the Yangtze River and urban district
respectively(in addition to the Laoshan
Sun Yat Sen
and other mountainous areas). The calculated AOD values in March 3 from the CE-318 sun photometer
MPL lidar
and satellite data were 0.455
0.289
and 0.4
respectively
and in March 6
the values were 0.373
0.267
and 0.25
respectively
in site location(Nanjing University of Information Science and Technology; 118.7°E
32.2°N).By comparing three kinds of AOD data from March to September
we observed that the difference of AOD is small
and the AOD values calculated from satellite and lidar are relatively reliable. In addition
in March 3 and 6
the sun photometric data showed two kinds of AOD variations: the first variation shows that AOD is high in the morning and evening and is low at noon; the second variation indicates that AOD is low in the morning and high in the evening. Moreover
results of the lidar data varied significantly with time
and lidar can be measured during cloudy weather to detect aerosol. This study indicates that the mean value of AOD by lidar below 9 km is approximately 0.3.In March 3 and 6
the area below 2 km was dirty
indicating that it contains some aerosols
whereas the area above 6km was relatively clean
which implies the presence of some clouds. Compared with ground-based observations
although the temporal resolution of satellite is low
satellite has an absolute advantage in case of trend analysis of a large area. In the development of aerosol observation in the future
combined with the advantages of the three observation methods
the proposed method can be helpful in the observation of large areas with high precision to retrieve the atmospheric aerosol spatial distribution and obtain more accurate aerosol parameters.
气溶胶MODISMPL激光雷达太阳光度计
aerosolMODISMPL LiDarSun Photometer
Cao N W. 2015a. New Lidar technology for aerosol measurements and extinction coefficient inversion. Optik-International Journal for Light and Electron Optics, 126(21): 3053–3057
Cao N W. 2015b. Aerosol profiling by Raman Lidar in Nanjing, China. Optics and Spectroscopy, 119(4): 700–707
Charlson R J, Schwartz S E, Hales J M, Cess R D, Coakley J A, Hansen J E and Hofmann D J. 1992. Climate forcing by anthropogenic aerosols. Science, 255(5043): 423–430
陈伟, 晏磊, 李成才, 唐洪钊. 2010. MODIS高分辨率气溶胶光学厚度反演及验证//Proceedings of 2010 International Conference on Remote Sensing (ICRS 2010). 杭州: 中国学术期刊电子出版社: 260–262Chen W, Yan L, Li C C and Tang H Z. 2010. Retrieval, validation of high resolution MODIS aerosol optical depths//Proceedings of 2010 International Conference on Remote Sensing (ICRS 2010). Hangzhou. China Academic Journal Electronic Publishing House: 260–262
陈潇潇, 金莲姬, 朱靖民. 2013. 黄山山底大气气溶胶数浓度日变化. 中国环境科学, 33(7): 1167–1173
Chen X X, Jin L J and Zhu J M. 2013. Daily variation of atmospheric aerosol number concentrations at the foot of Mount Huangshan. China Environmental Science, 33(7): 1167–1173
范娇, 郭宝峰, 何宏昌. 2015. 基于MODIS数据的杭州地区气溶胶光学厚度反演. 光学学报, 35(1): 101001
Fan J, Guo B F and He H C. 2015. Retrieval of aerosol optical thickness with MODIS data over Hangzhou. Acta Optica Sinica, 35(1): 101001
Fernald F G. 1984. Analysis of atmospheric Lidar observations: some comments. Applied Optics, 23(5): 652–653
韩永, 王体健, 饶瑞中, 王英俭. 2008. 大气气溶胶物理光学特性研究进展. 物理学报, 57(11): 7396–7407
Han Y, Wang T J, Rao R Z and Wang Y J. 2008. Progress in the study of physic-optics characteristics of atmospheric aerosols. Acta Physica Sinica, 57(11): 7396–7407
何秀, 邓兆泽, 李成才, 刘启汉, 王美华, 刘晓阳, 毛节泰. 2010. MODIS气溶胶光学厚度产品在地面PM10监测方面的应用研究. 北京大学学报(自然科学版), 46(2): 178–184
He X, Deng Z Z, Li C C, Lau A K H, Wang M H, Liu X Y and Mao J T. 2010. Application of MODIS AOD in surface PM10 evaluation. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(2): 178–184
Kaufman Y J, Fraser R S and Ferrare R A. 1990. Satellite measurements of large-scale air pollution: methods. Journal of Geophysical Research, 95(D7): 9895–9909
Kaufman Y J, Wald A E, Remer L A, Gao B C, Li R R and Flynn L. 1997. The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Geoscience and Remote Sensing, 37(5): 1286–1298
李成才, 毛节泰, 刘启汉. 2005. 利用MODIS资料遥感香港地区高分辨率气溶胶光学厚度. 大气科学, 29(3): 335–342
Li C C, Mao J T and Liu Q H. 2005. Remote sensing of high spatial resolution aerosol optical depth with MODIS data over Hong Kong. Chinese Journal of Atmospheric Sciences, 29(3): 335–342
柳晶. 2008. 中国地区气溶胶光学特性及辐射强迫的卫星遥感观测研究. 南京: 南京信息工程大学: 13–15Liu J. 2008. Aerosol Optical Properties and its Radiative Effects based on Satellite Observations in China. Nanjing: Nanjing University of Information Science and Technology: 13–15
刘玉杰, 牛生杰, 郑有飞. 2004. 用CE-318太阳光度计资料研究银川地区气溶胶光学厚度特性. 南京气象学院学报, 27(5): 615–622
Liu Y J, Niu S J and Zheng Y F. 2004. Optical depth characteristics of Yinchuan atmospheric aerosols based on the CE-318 sun tracking spectrophotometer data. Journal of Nanjing Institute of Meteorology, 27(5): 615–622
罗宇翔, 陈娟, 郑小波, Zhao T L. 2012. 近10年中国大陆MODIS遥感气溶胶光学厚度特征. 生态环境学报, 21(5): 876–883
Luo Y X, Chen J, Zheng X B and Zhao T L. 2012. Climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Ecology and Environmental Sciences, 21(5): 876–883
毛节泰, 张军华, 王美华. 2002. 中国大气气溶胶研究综述. 气象学报, 60(5): 625–634
Mao J T, Zhang J H and Wang M H. 2002. Summary comment on research of atmospheric aerosl in China. Acta Meteorologica Sinica, 60(5): 625–634
毛节泰, 李成才. 2005. 气溶胶辐射特性的观测研究. 气象学报, 63(5): 622–635
Mao J T and Li C C. 2005. Observation study of aerosol radiative properties over China. Acta Meteorologica Sinica, 63(5): 622–635
Nakajima T, Takamura T, Yamano M, Shiobara M, Yamauchi T, Goto R and Murai K. 1986. Consistency of aerosol size distributions inferred from measurements of solar radiation and aerosols. Journal of the Meteorological Society of Japan, 64(5): 765–776
邱金桓, 汪宏七, 周秀骥, 吕达仁. 1983. 消光-小角散射法遥感气溶胶谱分布的实验研究. 大气科学, 7(1): 33–41
Qiu J H, Wang H Q, Zhou X J and Lü D R. 1983. Experimental study of remote sensing of atmospheric aerosol size distribution by combined solar extinction and forward scattering method. Scientia Atmospherica Sinica, 7(1): 33–41
邱金桓. 1995. 从全波段太阳直射辐射确定大气气溶胶光学厚度 I: 理论. 大气科学, 19(4): 385–394
Qiu J H. 1995. A new method of determining atmospheric aerosol optical depth from the whole-spectral solar direct radiation. Part I: theory. Scientia Atmospherica Sinica, 19(4): 385–394
邱金桓, 吕达仁, 陈洪滨, 王庚辰, 石广玉. 2003. 现代大气物理学研究进展. 大气科学, 27(4): 628–652
Qiu J H, Lv D R, Chen H B, Wang G C and Shi G Y. 2003. Modern research progresses in atmospheric physics. Chinese Journal of Atmospheric Sciences, 27(4): 628–652
任丽新, 游荣高, 吕位秀, 张文, 王秀玲. 1999. 城市大气气溶胶的物理化学特性及其对人体健康的影响. 气候与环境研究, 4(1): 67–73
Ren L X, You R G, Lv W X, Zhang W and Wang X L. 1999. The physical and chemical characteristics of aerosols in the urban region and their influence on human health. Climatic and Environmental Research, 4(1): 67–73
Seinfeld J H, Carmichael G R, Arimoto R, Conant W C, Brechtel F J, Bates T S, Cahill T A, Clarke A D, Doherty S J, Flatau P J, Huebert B J, Kim J, Markowicz K M, Quinn P K, Russell L M, Russell P B, Shimizu A, Shinozuka Y, Song C H, Tang Y H, Uno I, Vogelmann A M, Weber R J, Woo J H and Zhang X Y. 2004. ACE-Asia: regional climatic and atmospheric chemical effects of Asian dust and pollution. Bulletin of the American Meteorological Society, 85(3): 367–380
Schmid B and Wehrli C. 1995. Comparison of sun photometer calibration by use of the Langley technique and the standard lamp. Applied Optics, 34(21): 4500–4512
石玉立, 杨丰恺, 曹念文. 2015. MPL反演南京北郊气溶胶光学厚度准确度的研究. 激光技术, 39(3): 372–376
Shi Y L, Yang F K and Cao N W. 2015. Study on inversion accuracy of aerosol optical depth with micropulse Lidar in northern suburb of Nanjing. Laser Technology, 39(3): 372–376
唐孝炎, 张远航, 邵敏. 2006. 大气环境化学(第二版). 北京: 高等教育出版社: 268–275
Tang X Y, Zhang Y H and Shao M. 2006. Atmospheric Environmental Chemistry (2nd ed.). Beijing: Higher Education Press: 268–275
夏俊荣. 2006. 利用激光雷达探测兰州大气气溶胶辐射特性. 兰州: 兰州大学: 8–30Xia J R. 2006. Lidar Measurement of Atmospheric Aerosol Radiative Properties over Lanzhou. Lanzhou: Lanzhou University: 8–30
张明明, 刘振波, 葛云键. 2014. 江苏省大气气溶胶光学厚度时空分布研究. 长江流域资源与环境, 23(12): 1775–1782
Zhang M M, Liu Z B and Ge Y J. 2014. Spatio-temporal distribution of atmospheric aerosol optical depth in Jiangsu province. Resources and Environment in the Yangtze Basin, 23(12): 1775–1782
赵柏林, 俞小鼎. 1986. 海洋大气气溶胶光学厚度的卫星遥感研究. 科学通报, (21): 1645–1649
Zhao B L and Yu X D. 1986. Satellite remote sensing of aerosol optical thickness in the ocean. Chinese Science Bulletin, (21): 1645–1649
祝存兄, 曹念文, 杨丰恺, 杨少波, 谢银海. 2015. 南京地区微脉冲激光雷达气溶胶观测. 激光与光电子学进展, 52(5): 050101
Zhu C X, Cao N W, Yang F K, Yang S B and Xie Y H. 2015. Micro pulse Lidar observations of aerosols in Nanjing. Laser and Optoelectronics Progress, 52(5): 050101
相关文章
相关作者
相关机构