Monte Carlo simulation and analysis of diffuse attenuation of downwelling irradiance in Meiliang Bay of Taihu Lake
- Vol. 21, Issue 5, Pages: 715-727(2017)
Published: 2017-9 ,
Accepted: 14 April 2017
DOI: 10.11834/jrs.20176349
扫 描 看 全 文
浏览全部资源
扫码关注微信
Published: 2017-9 ,
Accepted: 14 April 2017
扫 描 看 全 文
姜勃, 赵巧华. 2017. 太湖梅梁湾下行漫衰减系数的Monte Carlo模拟及分析. 遥感学报, 21(5): 715–727
Jiang B and Zhao Q H. 2017. Monte Carlo simulation and analysis of diffuse attenuation of downwelling irradiance in Meiliang Bay of Taihu Lake. Journal of Remote Sensing, 21(5): 715–727
漫衰减系数常用于计算水体浑浊度和划分水体等级,是水中生物进行光合作用等生态过程中的重要参数。本文假设水体固有光学特性(IOPs)不随垂直剖面变化,水体表面为镜面。通过Monte Carlo方法模拟追踪光子在水中的运动过程,统计大量光子在不同深度上的能量分布,计算出下行漫衰减系数
K
d
值。结果表明:在450 nm,550 nm和650 nm波长处模拟的
K
d
值基本上小于实测
K
d
值,对应后向散射概率为3%的散射相函数模拟的相对误差最小,适合用于构建太湖水体的
K
d
值反演模型。进一步分析入射天顶角、
b/a
值对
K
d
值变化的影响,结果发现:在
b/a
较大的情况下,散射相函数成为影响
K
d
值变化的主要因素。当
b/a
值大于9时,入射天顶角从10°变化到80°时,
K
d
值的变化率小于10%,可忽略入射天顶角的变化对
K
d
值的影响。利用单一散射相函数模拟不同波长处的
K
d
值,发现悬浮颗粒物浓度较高且以无机颗粒物为主体时,450—550 nm内模拟值大于实测值,550—650 nm内则相反,说明随着波长的增加,水体中颗粒物的散射呈现出前向散射减弱、后向散射增强的变化趋势。在反演不同波长处的
K
d
值时需考虑到散射相函数的光谱变化所造成的误差。
The diffuse attenuation coefficient (
K
d
) is an important property related to the penetration and availability of light underwater
which is of fundamental interest in studies of primary production
physical and biological process. The remote sensing estimation of diffuse attenuation coefficient can reveal the change of underwater light field
which is one of the main ways to obtain the diffuse attenuation coefficient. Models developed in the recent decades were mainly based on theoretical and numerical(radiative transfer)simulations. In this paper
a Monte Carlo calculation procedure has been developed for modeling of the penetration of light into turbid inland waters found at Meiliang Bay of Taihu Lake. We assume the water optical homogeneously
inherent optical properties (IOPs) do not change with depth
the water surface as a mirror
We can use the Monte Carlo method to simulate the movement process of photons in the water
energy distribution statistics of a large number of photons at different depths
calculate the downward diffuse attenuation coefficient value. We use several phase function with different backscatter fraction and overall shape as comparison. The results indicate that in the same condition of sun zenith angle and absorb coefficient (
a
)、scatter coefficient (
b
)
simulated
K
d
values appear quite different when choose different scattering phase function. Simulated
K
d
values based on phase function applied to ocean or slightly turbid waters are less than the measured values. Within 450 nm
550 nm
650 nm band
the relative error between simulated
K
d
value with phase function that have a backscatter fraction of 0.03 and measured
K
d
value is the minimum. The phase function that have a backscatter fraction of 0.03 is more appropriate to develop a semi-analytical model based on inland turbid lake water than particular normalized phase function used in ocean water. We use the MC model to discuss the relationship between variation of sun zenith angle and phase function and
K
d
value. It turns out under the condition of high values of
b/a
phase function become the main factor to effect the change of
K
d
value. When
b/a
values are greater than 9
the incident zenith angle changes from 10° to 80°
the rate of change in
K
d
values is less than 10%
so the impact of the variation of the sun zenith angle on the change of
K
d
value is negligible. Using a single wavelength scattering phase function to simulate
K
d
values at different wavelength. It’s found that in more turbid water
when the wavelength are less than 550 nm
simulated values are greater than measured values
in contrast
when the wavelength are greater than 550 nm
simulated values are less than measured values
which indicate that with the increase of wavelength
the scattering properties of particulate matter in water appear a variation trend that it’s weaken in the forward scattering and heighten in the backward scattering. When we develop the remote sensing model of
K
d
value for inland lake water type. We should consider the difference of scattering properties of water. Under different concentration of suspended matter and different wavelength
we should consider the spectral variation of the phase functions and use the phase function with the correct backscatter fraction.
Monte Carlo数值模拟漫衰减系数入射天顶角散射相函数
Monte Carlonumerical simulationdiffuse attenuation coefficientzenith anglescattering phase function
Aas E, Høkedal J and Sørensen K. 2005. Spectral backscattering coefficient in coastal waters. International Journal of Remote Sensing, 26(2): 331–343
Bricaud A, Morel A and Prieur L. 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains. Limnology and Oceanography, 26(1): 43–53
Clevel J S and Weidemann A D. 1993. Quantifying absorption by aquatic particles: a multiple scattering correction for glass-fiber filters. Limnology and Oceanography, 38(6): 1321–1327
Darecki M and Stramski D. 2004. An evaluation of MODIS and SeaWiFS bio-optical algorithms in the Baltic Sea. Remote Sensing of Environment, 89(3): 326–350
Fournier G R and Forand J L. 1994. Analytic phase function for ocean water//Proceedings of SPIE 2258, Ocean Optics XII. Bergen, Norway: SPIE: 194–201 [DOI: 10.1117/12.190063]
Gordon H R and McCluney W R. 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. Applied Optics, 14(2): 413–416
Gordon H R. 1989. Can the Lambert-Beer law be applied to the diffuse attenuation coefficient of ocean water?. Limnology and Oceanography, 34(8): 1389–1409
Gordon H R. 1992. Monte Carlo simulations for interpretation of irradiance measurements from moored instruments: preliminary results//Proceedings of SPIE 1750, Ocean Optics XI. San Diego, CA: SPIE: 366–370 [DOI: 10.1117/12.140663]
Green S A and Blough N V. 1994. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnology and Oceanography, 39(8): 1903–1916
Haltrin V I. 1999a. Two-term Henyey-Greenstein light scattering phase function for seawater//Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium. Hamburg: IEEE, 2: 1423–1425
Haltrin V I. 1999b. Light scattering coefficient of seawater for arbitrary concentrations of hydrosols//Proceedings of 1997 IEEE International Geoscience and Remote Sensing. Singapore: IEEE, 1: 299–301 [DOI: 10.1109/IGARSS.1999.774652]
Haltrin V I. 1997. Light scattering coefficient of seawater for arbitrary concentrations of hydrosols// Geoscience and Remote Sensing, IGARSS’97. Remote Sensing-A Scientific Vision for Sustainable Development. IEEE International. IEEE, 1999:299–301
黄昌春, 李云梅, 乐成峰, 孙德勇, 伍蓝, 王利珍, 王鑫. 2009. 太湖梅梁湾漫衰减系数季节性差异及其主导因素. 生态学报, 29(6): 3295–3306
Huang C C, Li Y M, Le C F, Sun D Y, Wu L, Wang L Z and Wang X. 2009. Seasonal characteristics of the diffuse attenuation coefficient of Meiliang Bay waters and its primary contributors. Acta Ecologica Sinica, 29(6): 3295–3306
Jerlov N G. 1976.Marine Optics.New York:Elsevier Scientific Publishing Company
Kirk J T O. 1981. Monte Carlo study of the nature of the underwater light field in, and the relationships between optical properties of, turbid yellow waters. Marine and Freshwater Research, 32(4): 517–532
Kirk J T O. 1984. Dependence of relationship between inherent and apparent optical properties of water on solar altitude. Limnology and Oceanography, 29(2): 350–356
Kirk J T O. 1991. Volume scattering function, average cosines, and the underwater light field. Limnology and Oceanography, 36(3): 455–467
Kirk J T O. 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University Press
乐成峰, 李云梅, 查勇, 孙德勇, 吕恒. 2009. 太湖水体后向散射特性模拟. 水科学进展, 20(5): 707–713
Le C F, Li Y M, Zha Y, Sun D Y and Lv H. 2009. Simulation of backscattering properties of Taihu Lake. Advances in Water Science, 20(5): 707–713
Leathers R A and Mobley C D. 2004. Monte Carlo Radiative Transfer Simulations for Ocean Optics: A Practical Guide. NRL/MR/5660-04-8819. Washington, DC: Naval Research Laboratory
Lee M E, Haltrin V I, Shybanov E B, Weidemann A D. 2003. Light scattering phase functions of turbid coastal waters measured in LEO-15 experiment in 2000// Oceans. IEEE, 2003:P2835-P2841 Vol.5.[DOI: 10.1109/OCEANS.2003.178358]
Lee Z P, Du K P and Arnone R. 2005. A model for the diffuse attenuation coefficient of downwelling irradiance. Journal of Geophysical Research: Oceans, 110(C2): C02016
Liu C C, Carder K L, Miller R L and Ivey J E. 2002. Fast and accurate model of underwater scalar irradiance. Applied Optics, 41(24): 4962–4974
马荣华, 宋庆君, 李国砚, 潘德炉. 2008. 太湖水体的后向散射概率. 湖泊科学, 20(3): 375–379
Ma R H, Song Q J, Li G Y and Pan D L. 2008. Estimation of backscattering probability of Lake Taihu waters. Journal of Lake Sciences, 20(3): 375–379
Marra J, Langdon C and Knudson C A. 1995. Primary production, water column changes, and the demise of a Phaeocystis bloom at the Marine Light-Mixed Layers site (59°N, 21°W) in the northeast Atlantic Ocean. Journal of Geophysical Research: Oceans, 100(C4): 6633–6643
Morel A and Ahn Y H. 1990.Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters. Journal of Marine Research 1990. Optical efficiency factors of free-living marine bacteria: Influence of bacterioplankton upon the optical properties and particulate organic carbon in oceanic waters. Journal of Marine Research, 48(1): 145–175
Mitchell B G. 1990. Algorithms for determining the absorption coefficient for aquatic particulates using the Quantitative Filter Technique//Proceedings of SPIE 1302, Ocean Optics X. Orlando, FL: SPIE: 137 [DOI: 10.1117/12.21440]
Mobley C D, Gentili B, Gordon H R, Jin Z H, Kattawar G W, Morel A, Reinersman P, Stamnes K, Stavn R H. 1993. Comparison of numerical models for computing underwater light fields. Applied Optics, 32(36): 7484–7504
Mobley C D. 1994. Light and Water: Radiative Transfer in Natural Waters. New York: Academic Press
Mobley C D, Sundman L K and Boss E. 2002. Phase function effects on oceanic light fields. Applied Optics, 41(6): 1035–1050
Pan X J and Zimmerman R C. 2010. Modeling the vertical distributions of downwelling plane irradiance and diffuse attenuation coefficient in optically deep waters. Journal of Geophysical Research: Oceans, 115(C8): C08016
Petzold T J. 1972. Volume Scattering Functions for Selected Ocean Waters. Scripps Institution of ceanography.San Diego, CA, Tech. Rep.
Platt T, Sathyendranath S, Caverhill C M and Lewis M R. 1988. Ocean primary production and available light: further algorithms for remote sensing. Deep Sea Research Part A. Oceanographic Research Papers, 35(6): 855–879
Pope R M and Fry E S. 1997. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. Applied Optics, 36(33): 8710–8723
Sathyendranath S, Prieur L and Morel A. 1989. A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters. International Journal of Remote Sensing, 10(8): 1373–1394
Smith R C and Baker K S. 1981. Optical properties of the clearest natural waters (200-800 nm). Applied Optics, 20(2): 177
Snyder W A, Arnone R A, Davis C O, Goode W, Gould R W, Ladner S, Lamela G, Rhea W J, Stavn R, Sydor M and Weidemann A. 2008. Optical scattering and backscattering by organic and inorganic particulates in U. S. coastal waters. Applied Optics, 47(5): 666–677
Sokolov A, Chami M, Dmitriev E and Khomenko G. 2010. Parameterization of volume scattering function of coastal waters based on the statistical approach. Optics Express, 18(5): 4615–4636
Stramska M and Frye D. 1997. Dependence of apparent optical properties on solar altitude: experimental results based on mooring data collected in the Sargasso Sea. Journal of Geophysical Research: Oceans, 102(C7): 15679–15691
孙德勇, 李云梅, 王桥, 乐成峰, 黄昌春, 伍蓝. 2008. 太湖水体散射特性及其空间分异. 湖泊科学, 20(3): 389–395
Sun D Y, Li Y M, Wang Q, Le C F, Huang C C and Wu L. 2008. The scattering characteristics of Lake Taihu waters. Journal of Lake Sciences, 20(3): 389–395
Wang M H, Son S and Harding Jr L W. 2009. Retrieval of diffuse attenuation coefficient in the Chesapeake Bay and turbid ocean regions for satellite ocean color applications. Journal of Geophysical Research: Oceans, 114(C10): C10011
张运林, 秦伯强, 陈伟民, 杨顶田, 季江. 2003. 太湖水体光学衰减系数的分布及其变化特征. 水科学进展, 14(4): 447–453
Zhang Y L, Qin B Q, Chen W M, Yang D T and Ji J. 2003. Analysis on distribution and variation of beam attenuation coefficient of Taihu Lake’s water. Advances in Water Science, 14(4): 447–453
相关文章
相关作者
相关机构